
Null Space Pursuit: An Operator-based Approach

to Adaptive Signal Separation

Silong Peng and Wen-Liang Hwang†

Institute of Automation, The Chinese Academy of Sciences, Beijing, China

Institute of Information Science, Academia Sinica, Taiwan†

October 19, 2009

Abstract

The operator-based signal separation approach uses an adaptive operator

to separate a signal into additive subcomponents. The approach can be for-

mulated as an optimization problem whose optimal solution can be derived

analytically. However, the following issues must still be resolved: estimating

the robustness of the operator’s parameters and the Lagrangian multipliers,

and determining how much of the information in the null space of the op-

erator should be retained in the residual signal. To address these problems,

we propose a novel optimization formula for operator-based signal separation

and show that the parameters of the problem can be estimated adaptively.

We demonstrate the efficacy of the proposed method by processing several

signals, including real-life signals.

1 Introduction

In recent years, the single-channel signal separation problem, which involves de-

composing a signal into its coherent sub-components, has attracted a great deal of

attention because it affects many applications. Typical single-channel signal sepa-

ration approaches decompose a signal into a mixture of several additive coherent

subcomponents [1, 2, 3, 11, 19, 18, 14]. The methods used to separate signals vary

because different subcomponents are used to construct the signals. For example,
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in the empirical mode decomposition (EMD) approach [11, 17, 20], an oscillatory

signal is decomposed into a summation of intrinsic mode functions (IMFs); and in

the matching pursuit (MP) approach [3, 6], a signal is decomposed into a summation

of time-frequency atoms. The following three recently proposed approaches are of

particular interest to us.

Sparsity-based approach

In a series of papers, the sparsity-based approach (also called morphological

component analysis) was developed to separate textures from the piecewise smooth

components [5, 18]. Assume that a signal 𝑆 is decomposed into a summation of 𝑈

and 𝑉 . Two dictionaries, Φ𝑢 and Φ𝑣, are associated with 𝑈 and 𝑉 respectively, such

that 𝑈 (resp. 𝑉 ) can be represented by Φ𝑢 (resp. Φ𝑣) with sparse coefficients (the

number of non-zero coefficients is small), but it cannot be sparsely represented by

Φ𝑣 (resp. Φ𝑢). Given the two dictionaries Φ𝑢 and Φ𝑣, the separation of 𝑆 can be

achieved by solving the following optimization problem:

min
𝛼𝑢,𝛼𝑣

{∣∣𝛼𝑢∣∣1 + ∣∣𝛼𝑣∣∣1 + 𝐹 (𝛼𝑢, 𝛼𝑣)}, (1)

where 𝑈 = Φ𝑢𝛼𝑢, 𝑉 = Φ𝑣𝛼𝑣, and 𝐹 (𝛼𝑢, 𝛼𝑣) is a Lagrange term. Starck et al. [18]

use the approach to separate an image into a cartoon component and a texture

component. The two dictionaries used in [18] are the wavelet family for cartoon

images and the Gabor family for textures. In general, the dictionaries employed can

be learned from a training process.

Norm-based approach

Vese et al. [19] assume that the components 𝑈 and 𝑉 lie in different metric

spaces with norms ∣∣ ⋅ ∣∣𝑢 and ∣∣ ⋅ ∣∣𝑣 respectively. To separate the signal 𝑆 into 𝑈

and 𝑉 , it is necessary that ∣∣𝑈 ∣∣𝑢 is small and ∣∣𝑈 ∣∣𝑣 is large, and ∣∣𝑉 ∣∣𝑣 is small and

∣∣𝑉 ∣∣𝑢 is large. To find 𝑈 and 𝑉 , the following optimization problem must be solved:

min
𝑈,𝑉

{∣∣𝑈 ∣∣𝑢 + ∣∣𝑉 ∣∣𝑣 + 𝐹 (𝑈, 𝑉 )}, (2)

where 𝐹 (𝑈, 𝑉 ) is a Lagrange term. The authors show that the cartoon and texture

components of an image can be separated by their approach. Following Rudin,

Osher, and Fatemi [9], the bounded variation (BV) is chosen as the space for cartoon

images; and following Y. Meyer [12], three spaces, 𝐸 = 𝐵−1
∞,∞, 𝐹 = 𝑑𝑖𝑣(𝐵𝑀𝑂) and

𝐺 = 𝑑𝑖𝑣(𝐿∞), are proposed for texture images. Details of the definition of the spaces
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and their corresponding norms can be found in [12, 19, 7]. The approach can be

extended to obtain a hierarchical decomposition of images for denoising, deblurring,

and segmentation purposes [13].

Although the sparsity- and norm-based methods are based on an ingenious idea

and derive solutions according to advanced mathematical techniques, they cannot

separate many signals successfully. For example, if a signal is a summation of

narrow band signals, it is very difficult to find sparse dictionaries or general spaces to

separate the narrow band subcomponents effectively. In fact, any narrow band signal

is a sparse representation of the dictionary of the DCT; therefore, all the narrow

band components of a signal share the same sparse dictionary. To separate the fine-

structured components of a signal, such as narrow band components, one needs a

signal separation method that can derive the operations based on the structures of

a signal, after which the operations are used to separate the signal into the desired

components. This was one of the motivations for the development of the operator-

based approach.

Operator-based approach

The operator-based approach separates 𝑆 into 𝑈 and 𝑉 so that 𝑉 = 𝑆 −𝑈 is in

the null space of an operator 𝒯𝑠. The sub-index, 𝑠, of the operator indicates that the

operator can be estimated from the signal 𝑆. The following optimization method is

used to estimate the signal �̂� that minimizes the problem:

min
𝑈

{∣∣𝒯𝑠(𝑆 − 𝑈)∣∣2 + 𝜆∣∣𝐷(𝑈)∣∣2}, (3)

where 𝑈 is the residual signal, and 𝐷 is a differential operator that regulates 𝑈 .

Minimizing the term ∣∣𝒯𝑠(𝑆 − 𝑈)∣∣2 indicates that 𝑆 − 𝑈 is in the null space of the

operator 𝒯𝑠. The solution of Equation (3) can be derived analytically:

�̂� = (𝒯 ∗
𝑠 𝒯𝑠 + 𝜆𝐷∗𝐷)−1 𝒯 ∗

𝑠 𝒯𝑠𝑆. (4)

In [14], we define a class of local narrow signals in the null space of the differential

operator as follows: ∑
𝑘∈𝑍

𝛼(𝑘)
𝑑𝑘

𝑑𝑡𝑘
, (5)

where {𝛼(𝑘)} is a square summable sequence belonging to 𝑙2(𝑍).

The operator-based approach can be used to decompose the residual signal �̃�

repeatedly. Hence, 𝑆 can be represented as the summation of subcomponents in
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the null spaces of a sequence of operators derived from the corresponding sequence

of residual signals. There are similarities between the operator-based approach, the

MP approach and the EMD approach, which we elaborate on in Section 2.

When an operator-based method is applied to a real-life signal, it is usually

difficult to determine the Lagrangian multiplier 𝜆 in Equation (3). In addition,

during the optimization of the equation, most of the signal in the null space of 𝒯𝑠

is removed from 𝑆. A small portion of 𝑆 is required to regulate �̂� , so it is retained

in the residual signal �̂� . However, we found that, for many signals, better solutions

can usually be obtained if we remove less information from the null space of 𝒯𝑠

than that required by Equation (3). This suggests that we should use a less greedy

approach so as to preserve more information in the null space of 𝒯𝑠 in the residual

signal. Thus, we propose the following solution to the optimization problem:

�̂� = argmin
𝑈

{
∣∣𝒯𝑠(𝑆 − 𝑈)∣∣2 + 𝜆(∣∣𝐷(𝑈)∣∣2 + 𝛾∣∣𝑆 − 𝑈 ∣∣2) + 𝐹 (𝒯𝑠)

}
. (6)

The first and the second terms of Equation (6) correspond to the terms in Equation

(3). The parameter 𝛾 in the third term of Equation (6) determines the amount of

𝑆 −𝑈 to be retained in the null space of 𝒯𝑠; and the last term is the Lagrange term

for the parameters of the operator 𝒯𝑠.

In this paper, we show that the optimal solution of Equation (6) can be derived

analytically, and the parameters of the operator 𝒯𝑠 as well as the parameters 𝜆 and

𝛾 in the equation can be estimated adaptively. The proposed algorithm is called

the Null Space Pursuit algorithm. We demonstrate the algorithm’s robustness and

accuracy in decomposing noisy signals as well as its efficacy when applied to some

real-life signals.

The remainder of this paper is organized as follows. In Section 2, we review the

operator-based approach and compare it with the MP and the EMD approaches. In

Section 3, we present the proposed Null Space Pursuit algorithm. Experiments on

simulated and real-world signals are reported in Section 4. We then summarize our

conclusions in Section 5.

2 Comparison with the MP and EMDApproaches

In this section, we review the operator-based approach proposed in [14] and compare

it with the MP approach and the EMD approach. We show that the operator-
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based approach can be regarded as a generalization of the MP approach, and that a

particular case of EMD decomposition is in the null space of an adaptive operator.

2.1 Operator-based Approach

The operator-based approach uses adaptive operators to decompose a signal into

additive subcomponents. The basic operation involves estimating an operator from

a signal 𝑆 and decomposing the signal into two components, 𝑈 and 𝑉 , such that 𝑉

is in the null space of the operator and 𝑈 is the residual signal. The operation can

be formulated as an optimization problem by Equation (3).

In [14], two types of local operators are used: an integral operator and a differ-

ential operator. The differential operator is

𝒯𝑠 =

(
1

𝜛(𝑡)2
𝑑2

𝑑𝑡2
+ 1

)2

, (7)

where 𝜛(𝑡) is the instantaneous frequency of the component 𝑉 [8]. It is estimated

from the positions of the local extrema of the signal 𝑆. The null space of the above

differential operator contains the narrow band signal 𝑃2(𝑡) cos(𝑤𝑡), where 𝑃2(𝑡) has

a polynomial of order 2.

The steps of the signal decomposition algorithm proposed in [14] are as follows.

Step 1 Input the signal 𝑆 and the stopping threshold 𝜖. Set 𝑉0 = 𝑆 and 𝑖 = 0.

Step 2 Estimate the instantaneous frequency from 𝑉𝑖 and derive the operator 𝒯𝑖

by Equation (7).

Step 3 Choose a 𝜆 value and use Equation (4) to obtain 𝑈𝑖+1:

𝑈𝑖+1 = (𝒯 ∗
𝑠 𝒯𝑠 + 𝜆𝐷∗𝐷)−1 𝒯 ∗

𝑠 𝒯𝑠𝑉𝑖. (8)

Step 4 If ∥𝑈𝑖+1∥ > 𝜖, then let 𝑉𝑖+1 = 𝑉𝑖 − 𝑈𝑖+1 and 𝑖 = 𝑖+ 1. Go to Step 2.

In Step 2, the instantaneous frequency of a signal is estimated from the locations

of its local extrema. However, in some signals comprised of two additive subcom-

ponents, the correct instantaneous frequency of each subcomponent can not be es-

timated accurately from the extrema of the signals [14]. Moreover, selection of the

value of 𝜆 in Step 3 is difficult. In the following, we describe a simple signal that is

formed by summing two single-tone signals, as shown in the top subfigure of Figure
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1. The two subfigures in the middle row of the figure are, respectively, the extracted

component and the error of the component if we set 𝜆 = 0.01; while the bottom

subfigures show, respectively, the extracted component and the error of the com-

ponent if we set 𝜆 = 0.001 instead. An automatic and robust estimation of 𝜆 is

extremely important because if an inappropriate 𝜆 value is chosen in one iteration,

it will affect the residual signal and be propagated to subsequent iterations. The

above algorithm decomposes 𝑆 into a summation of subcomponents, which are in

the null spaces of a sequence of operators. Then, we have

𝑆 =
𝑘∑

𝑖=1

𝑉𝑖 + 𝑈𝑘, (9)

where 𝑉𝑖 is in the null space of the operator 𝒯𝑖−1, which is derived from 𝑆−∑𝑖−1
𝑘=1 𝑉𝑘.

The procedure is similar to that of the MP algorithm, where the basis that best

matches the signal is selected, and the component that the signal projects onto the

basis is extracted from the signal in each iteration of the algorithm. The procedure

is also similar to that of the EMD algorithm, where an IMF derived from the signal

is extracted from the signal in each iteration. Next, we compare the operator-based

approach with the MP and EMD approaches.

2.2 Comparison with the MP Approach

The MP algorithm decomposes a signal into a linear expansion of the bases, 𝑔𝑗, in

an over-complete dictionary 𝐷 by a succession of greedy steps [3]. The signal 𝑆 is

first decomposed into

𝑆 =< 𝑆, 𝑔𝑗0 > 𝑔𝑗0 +𝑅1𝑆, (10)

where 𝑔𝑗0 = arg𝑔𝑗∈𝐷 max{∣ < 𝑓, 𝑔𝑗 > ∣}, 𝑅1𝑆 is the residual signal after approxi-

mating 𝑆 in the direction of 𝑔𝑗0 , and < 𝑅1𝑆, 𝑔𝑗0 >= 0. The dictionary element, 𝑔𝑗0 ,

combined with the inner product value < 𝑆, 𝑔𝑗0 > is called an atom. The matching

pursuit algorithm then decomposes the residual 𝑅1𝑆 by projecting it on to the basis

functions of 𝐷, as was done for 𝑆. After 𝑀 iterations, we have

𝑆 =
𝑀−1∑
𝑘=0

< 𝑅𝑘𝑆, 𝑔𝑗𝑘 > 𝑔𝑗𝑘 +𝑅𝑀𝑆, (11)

where 𝑆 is approximated by the number of 𝑀 atoms and the residual 𝑅𝑀𝑆.

Next, we show that the operator-based approach can be regarded as a general-

ization of the MP approach. We associate each 𝑔𝑗 ∈ 𝐷 with an operator 𝑇𝑔𝑗 such
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that

𝑇𝑔𝑗 : ⋅ → ⋅− < ⋅, 𝑔𝑗 > 𝑔𝑗. (12)

Since 𝑔𝑗 is a local basis, 𝑇𝑔𝑗 is a local operator. In addition, 𝑇𝑔𝑗 is a singular local

operator and 𝑔𝑗 is in the null space of 𝑇𝑔𝑗 because

𝑇𝑔𝑗(𝑆− < 𝑆, 𝑔𝑗 > 𝑔𝑗) = 𝑆− < 𝑆, 𝑔𝑗 > 𝑔𝑗 and 𝑇𝑔𝑗(𝑔𝑗) = 0. (13)

Thus, the MP algorithm can be regarded as using the dictionary of operators

{𝑇𝑔𝑗 ∣𝑔𝑗 ∈ 𝐷} to decompose a signal. It applies each operator in the operator dictio-

nary to a signal, and selects the operator 𝑇𝑔 that satisfies

min
𝑇∈{𝑇𝑔𝑗 ∣𝑔𝑗∈𝐷}

∥𝑇𝑆∥2. (14)

Let 𝑇𝑔 be the above solution. Then, based on the definition of 𝑇𝑔 in Equation (12),

we have

𝑇𝑔𝑆 = 𝑆− < 𝑆, 𝑔 > 𝑔. (15)

Because 𝑇𝑔𝑆 has the minimum norm, < 𝑆, 𝑔 > 𝑔 has the maximum norm. Thus, the

MP algorithm greedily selects the operator that can remove the most components

from the null space of the optimal operator in the signal.

2.3 Comparison with the EMD Approach

The EMD algorithm decomposes a signal into a summation of intrinsic mode func-

tions (IMFs). Each IMF must satisfy two conditions: (1) the number of extrema

and the number of zero-crossings can differ by one, at most; and (2) the mean value

of the envelopes defined by the local maxima and the local minima must be zero.

An IMF can be obtained by the following sifting procedure. Given a signal 𝑆, the

procedure first finds the extremal points, and then computes the mean value, 𝑀 , of

the envelopes of the extrema. If the mean value is not zero, the procedure is applied

to the new signal 𝑆 −𝑀 . The procedure is repeated several times until the mean

value of a signal is zero and the signal is an IMF. The sifting operation of the EMD

is defined and derived from the local extrema of a signal, while the operator of the

operator-based approach can be derived from a regularization approach by solving

an optimization probelm. Usually, the latter approach obtains a better result when

the signal is contaminated with noise. Examples of the signal separation results

derived by the operator-based and the EMD algorithm are compared in [4].
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The approach described in [14] considers a special case of IMF computation in

which the positions of a signal’s local extrema are invariant during the sifting process.

In such cases, calculation of the mean value during the process can be represented

as a linear operator, A, for all iterations. Let us assume that the sifting process

converges after 𝑘 iterations. Since the mean envelope derived from the extrema

of 𝑆 is 𝐴𝑆, we have 𝐼𝑀𝐹 = (𝐼 − 𝐴)𝑘𝑆. According to the definition of the IMF,

𝐴(𝐼𝑀𝐹 ) = 0; thus, 𝑆 is in the null space of the operator 𝐴(𝐼 −𝐴)𝑘 and 𝐼𝑀𝐹 is in

the null space of 𝐴. Note that the derivation can still be applied when the first few

iterations of the extrema positions vary, but the rest of the iterations are invariant

during the sifting process.

3 Null Space Pursuit

In the previous sections, we reviewed the operator-based approach proposed in [14]

and identified some difficulties that have yet to be resolved. To address those diffi-

culties, we propose a modification of the approach and show that the new parameters

can be estimated adaptively at the same time.

If we set the regulation operator 𝐷 in Equation (3) as the identity matrix, we

obtain

min
𝑈

{∣∣𝒯𝑠(𝑆 − 𝑈)∣∣2 + 𝜆∣∣𝑈 ∣∣2}. (16)

This is essentially a greedy approach since Equation (16) extracts the most suitable

component in the null space of 𝒯𝑠 from 𝑆 by minimizing ∣∣𝑈 ∣∣2. It can remove

more than enough information from the null space of 𝒯𝑠 in the residual signal. Let

us compare the following two decompositions of the signal 𝑆: 𝑆 = 𝑉 + 𝑈 , and

𝑆 = (1− 𝛽)𝑉 + 𝛽𝑉 + 𝑈 , where V is in the null space of 𝒯𝑠, and 𝛽 ∕= 0. In the first

case, 𝑉 is extracted and, at the next iteration, the operator 𝒯1 is estimated from the

residual 𝑈 ; and in the second case, (1−𝛽) 𝑉 is extracted and, at the next iteration,

the operator 𝒯2 is estimated from the residual signal 𝛽𝑉 + 𝑈 . The operators 𝒯1

and 𝒯2 are not necessarily the same. Thus, we propose using a controlled greedy

approach based on the following formula:

min
𝑈

{
∣∣𝒯𝑠(𝑆 − 𝑈)∣∣2 + 𝜆1(∣∣𝑈 ∣∣2 + 𝛾∣∣𝑆 − 𝑈 ∣∣2) + 𝐹 (𝒯𝑠)

}
, (17)
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Figure 1: Top row: Signal 𝑆(𝑡) = cos(4𝑡) − 1
3
cos(8𝑡) with 𝑡 ∈ [0, 6𝜋]. Middle row:

the left-hand and right-hand frames show, respectively, the extracted signal and the

error signal derived by setting 𝜆 = 0.01. Bottom row: the left-hand and right-hand

frames show, respectively, the extracted signal and the error signal derived by setting

𝜆 = 0.0001. The extracted components vary because we use different 𝜆 values.
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where 𝛾 denotes the leakage parameter and the last term is the Lagrange term of

the parameters of the operator 𝒯𝑠. We call 𝛾 the leakage parameter because its value

determines the amount of information about 𝑆−𝑈 that is retained in the null space

of 𝒯𝑠.

To demonstrate the proposed approach, we choose the following differential op-

erator:

𝒯𝑠 =
𝑑2

𝑑𝑡2
+ 𝛼(𝑡). (18)

If the input is a single-tone signal 𝑒𝑖𝜙(𝑡), then 𝑇𝑠𝑒
𝑖𝜙(𝑡) = 0 implies that the parameters

𝛼(𝑡) = 𝜙′(𝑡)2 are the square of the instantaneous frequency of the signal. To ensure

that 𝛼(𝑡) is a smooth function, we choose the second differential operator 𝐷 in 𝛼(𝑡)

and the parameter 𝜆2 for the Lagrangian term 𝐹 (𝒯𝑠). The optimization problem in

Equation (17) then becomes

min
𝛼(𝑡),𝑈,𝜆1,𝛾,𝜆2

{
∣∣
(

𝑑2

𝑑𝑡2
+ 𝛼(𝑡)

)
(𝑆 − 𝑈)∣∣2 + 𝜆1(∣∣𝑈 ∣∣2 + 𝛾∣∣𝑆 − 𝑈 ∣∣2) + 𝜆2∣∣𝐷𝛼(𝑡)∣∣2

}
. (19)

To separate a multi-tone signal 𝑆, we must apply Equation (19) several times, in the

same way as the algorithm described in Subsection 2.1. In the following, we show

that the parameters in Equation (19), except for 𝜆2, can be estimated simultaneously.

A. Discrete Representation

In a discrete case, 𝑆, 𝑈 and 𝛼 are column vectors of length 𝐿, and 𝐷 is the

matrix of the second difference. The optimization problem is rewritten as

min
𝛼,𝑈,𝜆1,𝛾,𝜆2

{
∣∣ (𝐷 + 𝑃𝛼) (𝑆 − 𝑈)∣∣2 + 𝜆1(∣∣𝑈 ∣∣2 + 𝛾∣∣𝑆 − 𝑈 ∣∣2) + 𝜆2∣∣𝐷𝛼∣∣2

}
, (20)

where 𝑃𝛼 is a diagonal matrix whose diagonal elements are equal to 𝛼. Let �̂�, �̂� , �̂�1, 𝛾

and �̂�2 be the solution of the above equation. Given �̂�1, 𝛾, and �̂�2. Equation (20)

becomes

𝐹 (𝛼, 𝑈, �̂�1, 𝛾, �̂�2) = ∣∣ (𝐷 + 𝑃𝛼) (𝑆−𝑈)∣∣2+ �̂�1(∣∣𝑈 ∣∣2+𝛾∣∣𝑆−𝑈 ∣∣2)+ �̂�2∣∣𝐷𝛼∣∣2. (21)

Then, we have
∂𝐹

∂𝛼
= 2𝐴𝑇 (𝐴𝛼+𝐷(𝑆 − 𝑈)) + 2𝜆2𝐷

𝑇𝐷𝛼, (22)

where 𝐴 is a diagonal matrix whose diagonal elements are equal to (𝑆 − 𝑈). Let

�̂�2 = 𝜆2. To estimate �̂�, we use the equation ∂𝐹
∂𝛼

∣𝑈=�̂�= 0 and obtain

�̂� = (𝐴𝑇𝐴+ �̂�2𝐷
𝑇𝐷)−1𝐴𝑇𝐷(𝑆 − �̂�). (23)
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Similarly, to estimate �̂� , we use the equation ∂𝐹
∂𝑈

∣𝛼=�̂�= 0 and obtain

�̂� =
(
𝑄𝑇𝑄+ (1 + 𝛾)�̂�1𝐼

)−1 (
𝑄𝑇𝑄𝑆 + �̂�1𝛾𝑆

)
= 𝑀(�̂�1, 𝛾)

(
𝑄𝑇𝑄𝑆 + �̂�1𝛾𝑆

)
, (24)

where 𝑄 = 𝐷 + 𝑃�̂� and 𝑀(�̂�1, 𝛾) =
(
𝑄𝑇𝑄+ (1 + 𝛾)�̂�1𝐼

)−1
.

The optimal value of �̂� depends on the parameter �̂�2. Our numerical experiments

show that �̂�2 is insensitive to the optimal solution; thus, we assign it a fixed value.

The optimal residual �̂� is dependent on the parameters �̂�1 and 𝛾, and the value

of �̂�1 is sensitive to the solution. Next, we propose a signal model and use it to

estimate the parameters �̂�1 and 𝛾.

B. Signal Model

We assume that a signal 𝑆 can be decomposed into two components �̃� and 𝑉

that are orthogonal to each other, and let 𝑉 be in the null space of the operator

𝐷 + 𝑃�̂�. The signal model assumes that

𝑆 = 𝑉 + �̃� , (25)

where 𝑉 𝑇 �̃� = 0 and (𝐷 + 𝑃�̂�)𝑉 = 0. It also assumes that the optimal residual

signal �̂� is a linear mixture of 𝑉 and �̃� :

�̂� = 𝛽1𝑉 + 𝛽2�̃� , (26)

where 𝛽1 and 𝛽2 are coefficients. Substituting Equations (25) and (26) into Equation

(21) and using 𝑉 𝑇 �̃� = 0 and (𝐷 + 𝑃�̂�)𝑉 = 0, we have

𝐹 (�̂�, �̂� , 𝜆1, 𝛾, �̂�2) = ∣∣ (𝐷 + 𝑃�̂�) (𝑆 − �̂�)∣∣2 + 𝜆1(∣∣�̂� ∣∣2 + 𝛾∣∣𝑆 − �̂� ∣∣2) + �̂�2∣∣𝐷�̂�∣∣2
= (1− 𝛽2)

2∣∣ (𝐷 + 𝑃�̂�) �̃� ∣∣2 + 𝜆1 (𝛽
2
1 + 𝛾(1− 𝛽1)

2) ∣∣𝑉 ∣∣2
+𝜆1 (𝛽

2
2 + 𝛾(1− 𝛽2)

2) ∣∣�̃� ∣∣2 + �̂�2∣∣𝐷�̂�∣∣2.
(27)

The above equation shows that the terms related to 𝛽1 and 𝛽2 can be separated, so

the optimization of 𝐹 (�̂�, �̂� , 𝜆1, 𝛾, �̂�2) can be divided into two components as follows:

𝐹1 = 𝜆1(𝛽
2
1 + 𝛾(1− 𝛽1)

2)∣∣𝑉 ∣∣2 (28)

and 𝐹 − 𝐹1. By taking the partial derivative of 𝐹1 with respect to 𝛽1 and setting

the result to zero, we obtain

𝛽1 =
𝛾

1 + 𝛾
. (29)
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Similarly, by taking the partial derivative of 𝐹 − 𝐹1 with respect to 𝛽2 and setting

the result to zero, we obtain

𝛽2 =
∣∣ (𝐷 + 𝑃�̂�) �̃� ∣∣2 + 𝜆1𝛾∣∣�̃� ∣∣2

∣∣ (𝐷 + 𝑃�̂�) �̃� ∣∣2 + 𝜆1(1 + 𝛾)∣∣�̃� ∣∣2 . (30)

If we assume that 𝜆1 has a very small value, then we have 𝛽2 ≃ 1 because ∣∣ (𝐷 + 𝑃�̂�) �̃� ∣∣ >
0. Substituting the above results for 𝛽1 and 𝛽2 into Equation (26), we obtain

�̂� =
𝛾

1 + 𝛾
𝑉 + �̃� . (31)

By Equations (25) and (31), we have

𝑆 − �̂� =
1

1 + 𝛾
𝑉 . (32)

The component removed from 𝑆 by solving Equation (20) with the operator 𝐷+𝑃�̂�

is 𝑆 − �̂� , which is a 1
1+𝛾

fraction of 𝑉 .

Based on the assumptions that 𝑆 = 𝑉 + �̃� and 𝑉 𝑇 �̃� = 0, as well as the result

of Equation (32), we can derive the optimal value of the parameter 𝛾 by

(𝑆 − �̂�)𝑇𝑆

∣∣𝑆 − �̂� ∣∣2 = 1 + 𝛾 = 1 + 𝛾. (33)

On the other hand, from Equation (24), we have

𝑆 − �̂� = 𝑆 −
(
𝑄𝑇𝑄+ (1 + 𝛾)�̂�1𝐼

)−1 (
𝑄𝑇𝑄𝑆 + �̂�1𝛾𝑆

)
= �̂�1(𝑄

𝑇𝑄+ (1 + 𝛾)�̂�1𝐼)
−1𝑆

= �̂�1𝑀(�̂�1, 𝛾)𝑆, (34)

where 𝑀(�̂�1, 𝛾) = (𝑄𝑇𝑄+ (1 + 𝛾)�̂�1𝐼)
−1. By Equation (34), we have

(𝑆 − �̂�)𝑇𝑆

∣∣𝑆 − �̂� ∣∣2 =
1

�̂�1

𝑆𝑇𝑀(�̂�1, 𝛾)
𝑇𝑆

𝑆𝑇𝑀(�̂�1, 𝛾)𝑇𝑀(�̂�1, 𝛾)𝑆
. (35)

From Equations (33) and (35), the optimal parameters �̂�1 and 𝛾 are related by

1

�̂�1

𝑆𝑇𝑀(�̂�1, 𝛾)
𝑇𝑆

𝑆𝑇𝑀(�̂�1, 𝛾)𝑇𝑀(�̂�1, 𝛾)𝑆
= 1 + 𝛾. (36)

The optimal value of �̂�1 can be estimated by solving the fixed point of the equation

1

1 + 𝛾

𝑆𝑇𝑀(𝜆1, 𝛾)
𝑇𝑆

𝑆𝑇𝑀(𝜆1, 𝛾)𝑇𝑀(𝜆1, 𝛾)𝑆
= 𝜆1. (37)
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From above derivation, we note that, given the value of 𝜆2, the optimal values

of the parameters �̂�(𝑡), �̂� , �̂�1, and 𝛾 in Equation (20) can be estimated. However,

the optimal value of 𝜆2, which regularizes the parameters of the operator (see Equa-

tion (18)), cannot be estimated by the proposed procedure. Instead, one can try

several values for 𝜆2 and choose the one that gives the best estimation of the other

parameters. However, in practice, we have found that the solution of Equation (20)

is insensitive to the value of 𝜆2 (see Section 4). Thus, its value can be fixed.

C. Null Space Pursuit Algorithm

We summarize the derivations in sub-sections A and B to solve the optimization

of Equation (20) in the following algorithm.

Step 1 Input: the signal 𝑆, the parameter �̂�2, the stopping threshold 𝜖, and the

initial values of 𝜆0
1 and 𝛾0.

Step 2 Let 𝑗 = 0, �̂�𝑗 = 0, 𝜆𝑗
1 = 𝜆0

1, and 𝛾𝑗 = 𝛾0.

Step 3 Compute �̂�𝑗 according to Equation (23) as follows:

�̂�𝑗 = (𝐴𝑇
𝑗 𝐴𝑗 + �̂�2𝐷

𝑇𝐷)−1𝐴𝑇
𝑗 𝐷(𝑆 − �̂�𝑗)), (38)

where 𝐴𝑗 is a diagonal matrix whose diagonal elements are equal to (𝑆 − �̂�𝑗).

Step 4 Compute 𝜆𝑗+1
1 according to Equation (37) as follows:

𝜆𝑗+1
1 =

𝑆𝑇𝑀(𝑄𝑗, 𝜆
𝑗
1, 𝛾

𝑗)𝑇𝑆

(1 + 𝛾0)𝑆𝑇𝑀(𝑄𝑗, 𝜆
𝑗
1, 𝛾

𝑗)𝑇𝑀(𝑄𝑗, 𝜆
𝑗
1, 𝛾

𝑗)𝑆
, (39)

where 𝑀(𝑄𝑗, 𝜆
𝑗
1, 𝛾

𝑗) = (𝑄𝑇
𝑗 𝑄𝑗 + (1 + 𝛾𝑗)𝜆𝑗

1𝐼)
−1 and 𝑄𝑗 = 𝐷 + 𝑃�̂�𝑗

, 𝑃�̂�𝑗
is a

diagonal matrix whose diagonal elements are equal to �̂�𝑗.

Step 5 Compute �̂�𝑗+1 according to Equation (24) as follows:

�̂�𝑗+1 =
(
𝑄𝑇

𝑗 𝑄𝑗 + (1 + 𝛾𝑗)𝜆𝑗+1
1 𝐼

)−1 (
𝑄𝑇

𝑗 𝑄𝑗𝑆 + 𝛾𝑗𝜆𝑗+1
1 𝑆

)
. (40)

Step 6 Compute 𝛾𝑗+1 according to Equation (33) as follows:

𝛾𝑗+1 =
(𝑆 − �̂�𝑗+1)

𝑇𝑆

∣∣𝑆 − �̂�𝑗+1∣∣2
− 1. (41)

Step 7 If ∣∣�̂�𝑗+1 − �̂�𝑗∣∣ > 𝜖∣∣𝑆∣∣, then set 𝑗 = 𝑗 + 1 and go to Step 3.
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Step 8 Output: the optimal residual signal �̂� = �̂�𝑗+1, the parameter �̂�1 = 𝜆𝑗+1
1 ,

the leakage parameter 𝛾 = 𝛾𝑗+1, and the operator parameter �̂� = 𝛼𝑗.

When the algorithm terminates, the component that is removed by the process is

𝑆 − �̂� = 1
1+𝛾

𝑉 (see Equation (32)). According to our signal model (see Equation

(25)), the component 𝑉 of 𝑆 is in the null space of the optimal operator 𝐷 + 𝑃�̂�.

Hence, our algorithm keeps a

𝑉 − 1

1 + 𝛾
𝑉 =

𝛾

1 + 𝛾
𝑉 (42)

portion of 𝑉 in the residual signal �̂� . In fact, the leakage parameter 𝛾 controls the

greediness when a component is removed from the null space of the operator in a

signal. In [14], the value 𝛾 = 0 corresponds to an extremely greedy case because the

operator 𝐷 + 𝑃�̂� removes the signal 𝑉 completely. On the other hand, if 𝛾 ≈ ∞,

then all of 𝑉 is retained in the residual signal. This corresponds to an extremely

lazy case because the operator 𝐷 + 𝑃�̂� does not remove any information. Thus,

we enforce the 𝛾 value in the segment between 0 and 1, which corresponds to the

operator removing at least 1
2
of 𝑉 . This constraint can be implemented in Step 6

of the algorithm by setting any 𝛾𝑗+1 value outside the segment to be the same as

the value at the closest end point of the segment.

4 Implementation and Experiment Results

In this section, we consider some implementation issues of the proposed algorithm

and present the results of experiments on various signals.

Every point in a signal has an 𝛼 value. The optimal value of parameter �̂� is

estimated in Step 3 of the proposed algorithm. The step uses Equation (38) to

estimate all the 𝛼 values of the signal simultaneously in each iteration. However,

we found that the estimation is unstable at points where (𝑆− �̂�𝑗) is very small [15].

Thus, in our implementation, we use the following method to estimate the 𝛼 values.

At each point 𝑡, we select a neighborhood 𝐵𝑡 of the point and calculate

�̂�𝑗(𝑡) =
𝑐𝑇𝑡 𝑑𝑡

𝑐𝑇𝑡 𝑐𝑡 + 𝜆2

, (43)

where 𝑐𝑡 is the restriction of (𝑆 − �̂�𝑗) on the interval 𝐵𝑡; 𝑑𝑡 is the second difference

of (𝑆 − �̂�𝑗) on 𝐵𝑡; and the parameter 𝜆2 ensures that the denominator is not zero.
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In all the experiments, the neighborhood 𝐵𝑡 is 31 points for any 𝑡. We also impose a

constraint to resolve the difficulty that arises due to the unstable estimation of 𝛼 in

some signals. Specifically, we constrain the support of the spectrum of the extracted

component 𝑉 to be in a subset of the spectrum of the signal 𝑆. This constraint

corresponds to the projection of the spectrum of 𝑉 into the support of the spectrum

of 𝑆. It is straightforward to incorporate the constraint into our algorithm. After

Step 5, we compute the spectrum of 𝑆 − �̂� , and remove the part that does not

appear in the support of the spectrum of 𝑆 to obtain the modified spectrum of

𝑆− �̂� . The residual signal is obtained by applying the inverse FFT on the modified

spectrum of 𝑆 − �̂� . Our experiments show that incorporating the constraint in

the implementation makes very little difference to the signal separation results.

However, incorporating it can reduce the variation of the estimated instantaneous

frequency when a signal’s SNR is low.

The threshold 𝜖 can be set as low as 1𝑒 − 7 for most signals, but the algorithm

can not be stopped if the noise is high. Thus, for a noisy signal, we set the threshold

value at 1𝑒−3. Although the Lagrangian multiplier 𝜆1 can be estimated adaptively,

the initial value of 𝜆0
1 may affect the results. Our experiment results show that,

for a broad range of initial 𝜆0
1 values (from 0.01 down to 0.0000001), the algorithm

decomposes a signal well. Different initial values in the range affect the convergence

rate of the decomposition. The parameter 𝜆2 is insensitive to various signals, so its

value is fixed. In all our experiments, �̂�2 is set at 0.0001 and the initial value of 𝛾0

is set at 1.

In the following, we provide some examples to demonstrate the results achieved

by our algorithm when decomposing various signals. The first example shows

that the algorithm can separate harmonic signals. We separate the signal 𝑆(𝑡) =

cos(4𝑡) − 1
3
cos(8𝑡) into two subcomponents, cos(4𝑡) and −1

3
cos(8𝑡). The extracted

subcomponents and the residual signals are shown in Figure 2. It is interesting

to note that the first extracted component is the low frequency subcomponent of

𝑆(𝑡). By contrast, in the approach in [14], which uses the extrema to estimate

the instantaneous frequency, the first extracted component is the high frequency

subcomponent of 𝑆(𝑡).

In the second example, we show that the proposed Null Space Pursuit (NSP)

algorithm can remove the noise from a noisy chirp signal. We experimented by

embedding the chirp signal 𝑠(𝑡) = (2 + cos(𝑡)) sin(8𝑡+0.1 ∗ 𝑡2) in additive Gaussian
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random noise so that the noisy chirp signal’s SNR was −0.12 dB, as shown in Figure

3. The decomposition results derived by the NSP algorithm are also shown in the

figure. The SNR of the extracted subcomponent is 9 dB, which means there is

a 9 dB gain in the noise reduction of this signal. The estimated instantaneous

frequency and the correct instantaneous frequency are superimposed in the bottom

left subfigure of Figure 3. The error is relatively large at the beginning and end of

the signal because of the boundary effect in our process.

The method in [14] can only be used to estimate the instantaneous frequency of

an oscillatory signal. For a non-oscillatory signal, the parameters of the proposed

operator cannot be derived from the extrema of the signal. In contrast, our algorithm

can estimate the parameters of the proposed operators, even when the signal is not

oscillatory. This is because we use a variational approach to estimate the parameters

(see Equation (23)). Figure 4 shows that our algorithm can remove the noise from a

piecewise smooth signal. Because of the regularization of our approach, the extracted

component is a smooth function. When compared to the original signal, the maximal

error appears as a singularity, as shown in the bottom-right subfigure of Figure 4.

We also study two real-life signals. The first is Poland’s daily electricity con-

sumption from 1990 to 1994 [10]. Figure 5 shows the decomposition results derived

by our algorithm. For real-world signals, since we cannot compare the decomposed

result to the correct solution, we cannot evaluate the performance of the decomposi-

tion. However, a similar decomposition of oscillatory components is reported in [14],

and the trend component is estimated by calculating the local mean of the signal

[16]. The optimal value of the Lagrangian parameter in [14] is selected manually by

trial and error. In contrast, all the parameters of our decomposition (except �̂�2) are

estimated adaptively from the signal and the residual signals of the decomposition.

The last example is the anomaly in the annual mean global surface temperature

reported in [21]. The purpose of processing the signal is to decompose it into additive

subcomponents and then observe the anomaly of variations in the global temperature

from the subcomponents. Figure 6 shows the decomposition results derived by

the NSP algorithm. The first subcomponent extracted by the algorithm is the

trend. The energy of the subcomponents extracted after the fifth subcomponent

is extremely small; therefore, we do not show them. The third subcomponent is

of the most interest because the variation in the temperature is relatively high

compared to that in the other subcomponents. In addition, the frequency of the
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third subcomponent decreases and then increases as the year progresses. The results

obtained by the EMD decomposition approach are reported in [21]. To compare

them with the results of the NSP algorithm, we show the first five subcomponents

of the Ensemble Empirical Mode Decomposition (EEMD) algorithm in Figure 7.

Clearly, decomposition results derived by the NSP and EMD algorithms are different.

It would therefore be very interesting to investigate the correlation between the

decomposed data derived by the two methods.

Finally, we compare the results of the NSP algorithm with those of the algorithm

in [14]. Since the parameters of the latter algorithm (called Algorithm08 for conve-

nience) must be determined manually, we use the optimal values of 𝜆1 obtained by

the NSP algorithm as the corresponding 𝜆 values of Algorithm08. First, to obtain

the detrend signal, we remove the trend of the global surface temperature signal by

subtracting the local mean subcomponent obtained by the NSP algorithm from the

signal. Figure 8 shows the results of applying Algorithm08 to extract the first five

subcomponents of the detrend signal. Since the corresponding 𝜆 and 𝜆1 values of

Algorithm08 and the NSP algorithm are the same, the differences in the separation

results are mainly due to the parameter 𝛾 in the third term of Equation (6), which

determines the amount of 𝑆 −𝑈 to be retained in the null space of the operator 𝒯𝑠,

and the estimated parameters of 𝒯𝑠. Algorithnm08 solves the optimization problem

in Equation (3), which does not have the 𝛾 parameter, by estimating the operator

from the extrema of a signal. The separation results of the NSP algorithm and

Algorithm08 are also different.

5 Conclusion

We have proposed an approach that uses an adaptive operator to separate a signal

into additive subcomponents. Basically, we generalize the original operator-based

approach by achieving better control of the amount of information to be removed

from the null space of the optimal operator in the signal. We show that, under our

approach, the operators’ parameters as well as the Lagrangian multipliers can be es-

timated adaptively. This overcomes the difficulties encountered when implementing

the original approach on real-life signals. We compare the proposed NSP approach

to the MP approach and show that it is a generalization of the MP approach. In

addition, we provide several examples, including real-life signals, to demonstrate the
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separation results derived by our algorithm. In our future work, we will investigate

various issues, such as developing operators to preserve singularities and extending

the method to images.
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Figure 2: Using the NSP algorithm to decompose cos(4𝑡)− 1
3
cos(8𝑡). Top left: The

input signal. Top right: the residual signal after the first and second subcomponents

are extracted from the input signal. Middle left: the first extracted component.

Middle right: the error signal obtained by subtracting the first extracted component

from cos(4𝑡). Bottom left: the second extracted component. Bottom right: the error

signal obtained by subtracting the second extracted component from −1
3
cos(8𝑡). We

use 𝜆0
1 = 1𝑒− 6 as the initial value to extract both subcomponents.

21



0 100 200 300
−4

−2

0

2

4
(a) noisy signal

0 100 200 300
−4

−2

0

2

4
(b) clean signal

0 100 200 300
−4

−2

0

2

4
(c) extracted first component

0 100 200 300
−4

−2

0

2

4
(d) error from real component

0 100 200 300
5

10

15
(e) extracted instantaneous frequency

 

 
ground truth IF
extracted IF

Figure 3: Removing the noise from a noisy chirp signal. Top left: the noisy chirp

signal, which has an SNR of −0.12 dB. Top right: the clean chirp signal. Middle

left: the extracted subcomponent, which has an SNR of 9 dB. Middle right: the

error signal obtained by subtracting the extracted component from the clean signal.

Bottom left: the instantaneous frequency of the extracted component (extracted IF)

and that of the clean chirp signal (ground truth IF) are superimposed. The initial

value of 𝜆0
1 is set at 0.00005. Note that, in this case, the noise level is so high that

the instantaneous frequency of the chirp signal cannot be estimated accurately from

the extrema of the noisy signal.
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Figure 4: Extracting the piecewise smooth component from a noisy signal. Top

left: the noisy signal. Top right: the clean piecewise smooth signal. Bottom left:

the extracted component. The singularities are over-smoothed by our approach.

Bottom right: the error signal obtained by subtracting the extracted component

from the clean signal. The maximal errors occur at the singularities. The initial

value of 𝜆0
1 is 0.00001.
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Figure 5: The decomposition of Poland’s electricity consumption signal. Top left:

the signal. Top right: the trend of the signal (the first extracted subcomponent).

Left-hand rows 2, 3, and 4: the second, third, and residual subcomponents respec-

tively. The spectrum of each extracted component is shown in the right subfigure

of the corresponding row. The initial values of 𝜆0
1 for the extraction of the first,

second, and third subcomponents are set at 0.001, 0.01, and 0.1 respectively.
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Figure 6: Top left: the signal of the anomaly in the annual mean global surface tem-

perature. The first five components and the residual signal are shown in subfigures

(b) to (g) respectively. The third component, plotted in subfigure (d), is a chirp

signal with a higher variation than the others. Note that the chirp signal decreases

and then increases as the year progresses. The initial values of 𝜆0
1 for the extraction

of the first, second, third, fourth, and fifth subcomponents are set at 0.001, 0.001,

0.01, 0.01, and 0.1 respectively. When the NSP algorithm stops, these values are

0.0018, 0.0023, 0.0081, 0.0030, and 0.0059, respectively. Note that the first extracted

component of the NSP algorithm is the local mean of the input signal.
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Figure 7: Separation results of the global surface temperature data (see subfigure

(a) of Figure 6) derived by the EEMD algorithm. The code of the algorithm can be

found in [21]. Subfigures (a),(b),(c),(d),(e), and (f) are the extracted first, second,

third, fourth and fifth components and the residual signal respectively.
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Figure 8: Separation results of the global surface temperature data (see subfig-

ure (a) of Figure 6) derived by using the separation algorithm in [14]. Subfigures

(a),(b),(c),(d),and (e) are the extracted first, second, third, fourth, and fifth compo-

nents respectively. The 𝜆 values used by Algorihthm08 to extract the first, second,

third, fourth, and fifth components are taken from the final 𝜆1 values of the second,

third, fourth, fifth, and sixth components derived by the NSP algorithm. The 𝜆

values of Algorithm08 are 0.0023, 0.0081, 0.0030, 0.0059 and 0.0093 for the extrac-

tion of the first, second, third, fourth, and fifth components, respectively (see the

caption of Figure 6).

27


