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Abstract—The human heartbeat interval is determined by
complex nerve control and environmental inputs. As a result,
the heartbeat interval for a human is a complex time series, as
shown by previous studies. Most of the analysis algorithms
proposed for characterizing the profile of heartbeat time
series, such as detrended fluctuation analysis and multi-scale
entropy, are based on various characteristics of dynamics. In
this study, we present an empirical mode decomposition-
based intrinsic mode analysis, which uses the appearance
energy index (AEI) to quantify the property of long-term
correlation, and structure index (SI) to characterize the
internal modulation of data. This presented algorithm was
used to investigate the human heartbeat time series down-
loaded from PhysioBank. We found the profiles of human
heartbeat time series of subjects with congestive heart failure
(CHF) or atrial fibrillation (AF) are significantly different
from those of healthy subjects in internal modulation as
shown by SI. Moreover, AEI is the critical characteristics for
verifying subjects with CHF from subjects with AF in a
degree of long-term correlation. Both AEI and SI contribute
to presenting the characteristic profiles of a human heartbeat
time series.

Keywords—Heart beat interval, Empirical mode decomposi-

tion, Detrended fluctuation analysis, Intrinsic mode analysis,
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INTRODUCTION

It has been established that the heartbeat interval is
a complex time series and so quantifying the com-
plexity of such signals is a powerful tool to understand
the underlying controlling mechanisms of the heart-
beat and other related physiological conditions. Pre-
vious studies9,16–18 have used various approaches, such
as multi-scale entropy,2 detrended fluctuation analysis
(DFA),9 and the rank order statistics of symbolic

sequences22 to verify various physiological and path-
ological conditions with some degree of success. These
analysis algorithms successfully showed the particular
characteristics (i.e., entropy, long-term correlation,
and statistical properties of symbolic sequences) for
dynamics of complex time series.

Different from these analysis algorithms for
dynamics of complex time series, three main spectral
components have been identified in the heart rate vari-
ability (HRV) spectra in spectral analysis methods.
There are a very low-frequency (LF) component below
0.04 Hz; an LF component, from 0.04 to 0.15 Hz; and a
high-frequency (HF) component, from 0.15 to 0.4 Hz.19

The power of the HF component mainly reflects the
efferent vagal activity and the LF component reflects
both sympathetic and vagal activities.19 In general, a
linear method (e.g., Fourier transform) generates
comparable results,19 but assumes stationary condi-
tions that are difficult to achieve, even in short-term
records under physiologically stable or autonomic-
controlled conditions. However, both linearity and
stationary assumptions are not totally adequate to be
used in analyzing a human heartbeat time series, which
performs non-linear and non-stationary characteristics.

In 1995, empirical mode decomposition (EMD) was
first proposed to decompose the intrinsic mode func-
tions (IMFs) from non-linear and non-stationary sig-
nals adaptively to the nature of signals.6,7,10 This
decomposition has the advantage of automatically
identifying the intrinsic time scales of the data without
any presuppositions regarding the data’s form. Hence,
the IMFs derived by EMD may carry actual physical
significance.10 Therefore, EMD was applied to extract
at least four main components localized in the auto-
nomic bands of the HRV signals under controlled
breathing maneuvers.5 It overcame the difficulty of
achieving strictly stationary conditions and appropri-
ately reflected the non-linear contents of humans’
heartbeat time series. In such applications of HRV
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analysis, EMD was considered to perform an innova-
tive technique of decomposition. Furthermore, recent
studies show that EMD can be used to quantify the
fractal property of non-linear signals via the charac-
teristic frequencies and power densities of the decom-
posed IMFs.8,21 Fractal property has been considered
to be an important characteristic of non-linear time
series. Hence, we conducted this study to develop a
different application of human heartbeat analysis
based on EMD.

In these further studies using EMD,8,21 Fourier
transform and mean square energy were used to derive
two characteristic parameters (i.e., energy density and
averaged period) of each IMF, which reflect the char-
acteristic frequency and energy density of an intrinsic
component. Moreover, the plot of energy densities
against their corresponding averaged periods shows
some hidden information about the non-linear dynam-
ics of the signal. Thus, we conducted this approach to
quantify the characteristics of human heartbeat time
series via the distribution of energy densities and aver-
aged periods of IMFs in the EMD-based human heart-
beat analysis. Consequently, we defined two parameters
used in the human heartbeat analysis.

As the first parameter, appearance energy index
(AEI) was defined to quantify the characteristic of
energy–density distribution for IMFs decomposed from
human heartbeat time series via the slope of logarithmic
energy density/averaged period plot. According to cor-
relative studies,8,21 the slope of the logarithmic energy
density/averaged period plot reflects the fractal property
(i.e., long-term correlation) of a Gaussian noise. In this
approach, accuracies of both assessments of AEI and
Hurst exponent were examined in a numerical experi-
ment using simulated time series of Gaussian noises.
According to the results of our numerical experiment,
AEI was proven as an accurate assessment for the long-
term correlation of Gaussian noises. Hence, AEI was
used to quantify the fractal property (i.e., the property of
long-term correlation) of human heartbeat time series in
this EMD-based approach.

In addition, the distribution of averaged periods of
IMFs also performs to quantify a different profile of
human heartbeat time series, which is different from
AEI. It shows an internal self-modulation of human
heartbeat time series. For healthy subjects, the internal
self-modulations of human heartbeat time series are
significant and can be observed via the distribution of
averaged periods of IMFs. In contrast, when the
internal self-modulation is weakened because of heart
disease, such as congestive heart failure (CHF) and
atrial fibrillation (AF), human heartbeat time series
become stochastic. Thus, we defined the second index,
named structural index (SI), as a new assessment for
underlying self-modulation in this approach.

Finally, we used a receiver operating curve (ROC)
to check the sensitivities and specificities of AEI and SI
in different classifications. ROC curves show that AEI
appears to be a good indicator for distinguishing ill
subjects with CHF from AF. SI is the critical param-
eter to distinguish healthy subjects from subjects with
heart disease (either CHF or AF) via the underlying
modulation of human heartbeat time series. These two
parameters reflect two different underlying character-
istics of a human’s cardiac systems: AEI is an appro-
priate assessment of long-term correlation for a
human’s heartbeat time series, which reflects the dif-
ference of physiological characteristics between sub-
jects with CHF and AF; SI appears to be an
assessment of self-modulation in human’s cardiac
systems. Therefore, we can get further understanding
of a human’s cardiac system via characteristics of the
self-modulation and long-term correlation reflected by
AEI and SI.

METHODS

Empirical Mode Decomposition

The EMD method derives the envelopes of a given
time series via cubic spline connecting local maxima
and minima separately. Then, sifting process decom-
poses the IMF from the time series by subtracting the
mean of envelopes to itself. Sifting process should
repeat until the component satisfies two conditions22:
(1) For the entire time series, the difference between
numbers of extrema and zero-crossing must equal to
zero or one. (2) At any data point, the mean value of
upper and lower envelopes is zero. The component that
satisfies those two conditions mentioned above is
called an IMF, denoted as Ck. The difference between
time series and the kth IMF is the kth residue, denoted
as rk, and treated as the data for decomposing the next
IMF. Decomposition process should be repeated until
the residue becomes monotonic or only one extremum
remains. The original data, X(t), can be reconstructed
by the summation of n IMFs and the nth residue:

XðtÞ ¼
Xn

k¼1
Ck þ rn: ð1Þ

Characteristics of Frequency-Energy Distribution
of Noise Using EMD

Hilbert transform is a common method used to
derive time–frequency–amplitude distribution for a
non-stationary periodical function. Most previous
applications of EMD used Hilbert transform to derive
the instantaneous frequency and amplitude for each
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IMF. The combination of EMD and Hilbert transform
is named as Hilbert Huang transform. In this
approach, we focused on the investigation to the
dynamical characteristics of human heartbeat time
series via the spectral characteristics of IMFs, but not
the time–frequency–amplitude distribution. Therefore,
the spectral characteristics of each IMF should be
defined first in this approach.

Recently, Wu and Huang21 conducted a funda-
mental study on the characteristics of white noise using
EMD. In their study, characteristic period was derived
as an averaged period from Fourier spectrum of an
IMF and energy density was mean square energy of
time series of an IMF. Accordingly, energy density and
its corresponding averaged period of the kth IMF can
be calculated using

Ek ¼
1

N

XN

j¼1
CkðjÞ½ �2 ð2Þ

�Tk ¼
Z

SlnT;kd lnT

Z
SlnT;k

d lnT

T

� ��1
ð3Þ

where Ek is the energy density of the kth IMF; Ck(j) is
the kth IMF at position j; SlnT,k is the Fourier spec-
trum of the kth IMF as a function of T, the period of
the local wave form; dlnT is the differential of loga-
rithmic period; and �Tk is the averaged period of the kth
IMF.

Moreover, the plot of logarithmic energy densities
against their corresponding averaged periods presents
a pseudo-spectrum, which indeed has the physical
meaning of a spectrum. According to Wu and
Huang’s21 study, the logarithmic plot of energy den-
sities against their corresponding averaged periods for
IMFs is a straight line with the slope of �1 and the
straight line passes through the origin for a white noise
with a norm of 1. Furthermore, Flandrin et al.8 con-
ducted a similar study to investigate the characteristics
of Gaussian noises with various fractal properties.
Their study showed that the slope of the logarithmic
energy density/averaged period plot depends on Hurst
exponent (H) for a fractal Gaussian noise.8,21 Here,
Hurst exponent is a common assessment of long-term
correlation for Gaussian noises.11,13 H> 0.5 induces a
positive long-term correlation and H< 0.5 induces a
negative correlation. White noise is a special case of
Gaussian noise with H = 0.5.

Definition of AEI for Long-Term Correlation
of Gaussian Noises

According to the results shown in previous stud-
ies,8,21 the slope of the logarithmic energy density/
averaged period plot of IMFs reflects a power–law

correlation of a non-linear time series. This finding
motivated us to define a new assessment of long-term
correlation for quantifying the fractal property of a
human’s heartbeat time series based on EMD. To
define this new assessment for long-term correlation,
we conducted a numerical experiment for long-term
correlation quantification using simulated time series
of fractal Gaussian noise with Hurst exponents from
0.1 to 0.9. In this numerical experiment, the simulated
times series of fractal Gaussian noise with data length
of N = 4096 were generated using the Wood and
Chan20 algorithm. These simulated times series of
fractal Gaussian noise were decomposed to the first
five IMFs by EMD. The characteristic of long-term
correlation of simulated time series was presented
using a logarithmic plot of energy densities against
their corresponding averaged periods.

For a white noise (as a simulated fractal Gaussian
noise with Hurst exponent of 0.5), the slope of loga-
rithmic energy density/averaged period plot is �1. The
values of slope are higher than �1 for a simulated time
series of fractal Gaussian noise with positive long-term
correlation and the values are less than �1 for a time
series with negative long-term correlation. Thus, we
defined AEI using the value of slope of logarithmic
energy density/averaged period plot plus 1 to quantify
a positive correlation with positive value of AEI and a
negative correlation with negative AEI. Hence, we
conducted a numerical experiment to prove that AEI is
a good assessment of long-term correlation for non-
linear time series. In this experiment, 1000 simulated
time series for each fractal Gaussian noise with dif-
ferent Hurst exponent from 0.1 to 0.9 and step of 0.2
was used to examine the accuracy of AEI in long-term
correlation evaluation. The average and standard
deviation derived from 1000 values of AEI for the
simulated time series of each fractal Gaussian noise
with different Hurst exponent is shown in Fig. 1b.
Analysis results of AEI were compared with results the
derived by a referred method (i.e., Rescaled range
analysis, R/S) as shown in Fig. 1a. R/S analysis acts to
derive a direct assessment of Hurst exponent for a non-
linear signal.

Figure 1 shows the analysis results using the scaling
exponents of R/S analysis and AEI for the simulated
time series of fractal Gaussian noise with Hurst
exponent from 0.1 to 0.9. In these graphic presenta-
tions, both assessments (i.e., the scaling exponent of
R/S analysis and AEI) perform significantly positive
correlations with the fractal property of the simulated
time series. Hence, we used Pearson’s correlation
coefficient to quantify the consistence between the
assessment of fractal property and the Hurst exponent
of the simulated time series. According to the results of
our numerical experiment, we found the value of
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Pearson’s correlation coefficient between the AEI and
the original fractal properties of the simulated time
series of Gaussian noises (p = 0.986) is higher than
that between the assessment derived by R/S analysis
and the original fractal properties of simulated time
series (p = 0.963). It showed AEI performs more
accurately in the evaluation of long-term correlation
than R/S analysis does. Thus, AEI is proven as an
effective indicator for long-term correlation and can be
used as the first parameter in the EMD-based human
heartbeat analysis.

Define Structure Index Using the Function of Dyadic
Filter Bank

According to previous studies, EMD acts as a
dyadic filter bank for a broadband time series, which
contains no significant components. As a dyadic filter
bank, EMD performs a wavelet-like decomposition to

a broadband time series and the distribution of aver-
aged periods of IMFs is a geometric series with a ratio
of 2. Moreover, EMD also acts as an adaptive
decomposition to a broadband time series adaptive to
the nature of a signal. According to the results of
previous studies8,21 and our numerical experiment, the
averaged periods of IMFs are the critical parameters
for identification of a stochastic time series. Since
EMD acts as a dyadic filter bank for such signals,
averaged periods of the following IMFs depend on the
averaged period of IMF 1. To a totally stochastic time
series (i.e., white noise as fractal Gaussian noises with
H = 0.5), averaged period of IMF 1 is close to a
constant of 2.87 sampling intervals. In a human’s
heartbeat time series analysis using EMD, we found
that the averaged period of IMF 1 reflects the internal
modulation with a fixed period of around 4 s (5 beats
for heart rate of 75 bpm) for a healthy subject, but the
averaged period of IMF 1 is similar to that decom-
posed from a stochastic time series for subjects with
heart disease (either CHF or AF). Moreover, distri-
butions of averaged periods of IMFs decomposed from
human heartbeat time series are similar to geometric
series with a ratio of 2 for both a healthy group and a
group with heart disease. Thus, we defined the SI to
present the characteristic of internal modulation via
averaged-period distribution of IMFs decomposed
from human heartbeat time series.

Furthermore, in order to define this new index of
internal modulation, we had to establish a baseline of
total stochastic time series to derive a measurement
different from the baseline for a human’s heartbeat
time series with a significant internal modulation, but
not stochastic. In this study, white noise is considered
as the representative of totally stochastic time series
and was used as the baseline of this new assessment of
internal modulation. Hence, an ensemble result of
averaged periods of IMF 1–5 derived from 1000 sim-
ulated time series of white noise was used as the
baseline for the new assessment. Values of the baseline
(averaged periods of IMF 1–5) are shown in Table 1 in

FIGURE 1. Analysis results using the scaling exponents of
R/S analysis and AEI for the simulated time series of fractal
Gaussian noise with Hurst exponent from 0.1 to 0.9.
(a) Results of scaling exponent of R/S analysis; (b) results of
AEI index in EMD-based analysis.

TABLE 1. Values of averaged periods for IMF 1–5 decom-
posed from the simulated time series of white noise.

IMF

1 2 3 4 5

Averaged periods

in linear scale

2.87 6.08 12.61 25.85 52.75

Averaged periods

in logarithmic scale

1.056 1.806 2.534 3.252 3.966

1000 simulated time series of white noise were used to derive

these ensemble values of averaged periods of IMF 1–5. Averaged

period is shown in number of sampling intervals.
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unit of the sampling intervals (i.e., beat number of
heartbeat time series).

Thus, SI, which performs the new assessment of
internal modulation, is defined as the difference
between the distributions of averaged periods for two
sets of IMFs, which are derived from the evaluated
human heartbeat time series and baseline. Moreover,
the energy density of each IMF was considered to
contribute as the weighting factor in the calculation of
SI. Thus, SI can be calculated by the following equa-
tion:

IS ¼
Pn

k¼1 lnTs;k � lnTr;k

�� �� � ðEs;kÞ
n �
Pn

k¼1 ðEs;kÞ
ð4Þ

where Ts,k and Es,k represent averaged period and
energy density of the kth IMF extracted from a human
heartbeat time series; Tr,k represents the kth averaged
period of baseline; and n is the number of IMFs.

According to the definition of SI, a value of SI close to
0 means that the internal modulation of a time series is
similar to that of a stochastic time series. In contrast, a
value of SI far from0 shows that a time series contains an
internal modulation different from that of a stochastic
time series. Hence, SI was used as the second parameter
in this EMD-based approach of human heartbeat
analysis. It is a powerful indicator used to verify the
internal modulation of a human’s heartbeat time series
based on the function as a dyadic filter bank of EMD.

MATERIALS

In this investigation, a database downloaded from
PhysioBank4 was used as the study material. This
database includes 40 healthy subjects with subgroups
of young and elderly (20 young and 20 elderly), 43
subjects with severe CHF, and 9 subjects with AF. This
database has been used in many previous studies of
human heartbeat analysis using different analysis
algorithms. It provides samples of human heartbeat
time series for four groups (i.e., healthy young, healthy
elderly, subjects with CHF, and subjects with AF).
Therefore, the analysis results of this proposed EMD-
based algorithm can be compared with results of pre-
vious studies to illustrate the advantages.

RESULTS

In this approach, we developed a two-parameter
analysis algorithm to investigate a human’s heartbeat
time series downloaded from PhysioBank. The first
parameter is a new assessment for the property of long-
term correlation. In a previous study,15 DFA was also
proposed as an assessment of long-term correlation for

non-linear time series and applied in human heartbeat
analysis using the same database. Therefore, we
examined the performances of AEI and scaling expo-
nent of DFA in human heartbeat analysis by three
classifications: (1) classification between groups of
healthy young and healthy elderly; (2) classification
between healthy groups and groups with heart disease;
(3) classification between groups of CHF and AF.
Table 2 shows the results of classifications using AEI
or scaling exponent of DFA as the assessment of the
long-term correlation for human heartbeat time series.
In Table 2, we found similar performances for AEI
and scaling exponent of DFA used in three different
classifications. This proves that AEI performs as the
first parameter for quantification of long-term corre-
lation in this EMD-based approach with some degree
of success as the original method of DFA does.
Physiologically, the property of long-term correlation
is a useful indicator for a subject with CHF or AF, but
not a useful indicator for diagnosing subject with/
without heart disease.

Therefore, we defined the second parameter via the
distribution of averaged periods in this approach.
According to statistical results of averaged periods of
the first five IMFs for four groups (i.e., healthy young,
healthy elderly, CHF, and AF) as shown in Fig. 2,
EMD actually acts as a dyadic filter bank to a human
heartbeat time series. Distribution of averaged periods
is similar to a geometric sequence with a ratio of 2. For
the groups with heart disease (i.e., CHF or AF), the
averaged periods of IMF 1 are close to 3.2 beats (1.2 in
logarithmic scale), but they are around 6–8 beats for
healthy subjects. According to the results of previous
studies,8,21 the averaged period of IMF 1 for a white
noise is around 2.87 sampling intervals. So, it is obvi-
ous that the internal modulations of heartbeat time
series for healthy subjects are different from those for
subjects with heart disease.

TABLE 2. Results of three different classifications using AEI
and scaling exponent of DFA.

Classification

Scaling exponent

of DFA AEI

Set-point

Correct

rate (%) Set-point

Correct

rate (%)

Young and elderly 0.453 72.5 1.205 72.5

Healthy subjects and

subjects with heart

disease

0.257 63.9 0.771 63.0

With CHF or AF 0.093 98.1 0.132 98.1

Values are shown in the best correct rate and its corresponding

set-point in each classification.

Set-point is the value of cutoff point for each classification and the

correct rate is the percentage of subjects which are classified

correctly.
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In addition, according to the results of our numer-
ical experiment, averaged periods of the first IMF
decomposed from simulated time series of fractal
Gaussian noises with different values of Hurst expo-
nent depend on the fractal property of Gaussian noise.
Table 3 shows the ensemble results for averaged peri-
ods of the first IMF derived from 100 simulated time
series of Gaussian noise with different fractal proper-
ties. Heartbeat time series for a subject with heart
disease (CHF or AF) performs internal modulation
similar to that of fractal Gaussian noise with positive
long-term correlation. (Averaged periods of IMF 1 are
around 3.2 for heartbeat time series of subjects with
heart disease, which are close to averaged periods of
Gaussian noises with positive long-term correlations
H> 0.5.) However, it seems to have an internal
modulation with a rhythm similar to respiration1,3 in
IMF 1 for the healthy subjects.

Thus, the second parameter, SI, acts as an assess-
ment of internal modulation of human heartbeat time
series. The internal modulation of human heartbeat
time series for a healthy subject is different from that of
a stochastic time series, but that for a subject with
either CHF or AF is similar to that of a stochastic time
series. To integrate the analysis results of both AEI
and SI, a two-dimensional plot was used to present the
distribution for subjects of four groups as shown in
Fig. 3. In this figure, SI performs as a parameter dif-
ferent from the assessment of long-term correlation as

AEI does. In the previous approach using DFA, the
internal modulation of human heartbeat was ignored
in analysis. In this approach, the functions of EMD
lead us to find the internal modulation of a human’s
cardiac system, not only the physical property of long-
term correlation.

In addition, receiver operating characteristic (ROC)
curve has often been used to evaluate the sensitivity
and specificity of classification using different parame-
ters.12 ROC curve reflects relative true positive-, true
negative-, false positive-, and false negative-values,
termed specificity and sensitivity. Thus, for the purpose
to examine that AEI and SI perform different sensitiv-
ities and specificities in different classification models
considering different underlying physiological charac-
teristics, two classifications were conducted for exami-
nation. Moreover, the performances of DFA in two
classifications were estimated using ROC curve in
comparisons with those of AEI and SI. Figure 4a shows
the ROC curve for classification to subjects with CHF
or AF. AEI and DFA obviously perform better than SI
does in this classification. Physiologically, heartbeat
time series of subjects with CHF has a higher degree of
long-term correlation than those of subjects with AF.
Figure 4b shows the sensitivity for classification to
healthy subjects and subjects with heart disease (i.e.,
CHF or AF). SI obviously performs better than AEI
and DFA do in this classification. Since both the scaling
exponents of DFA and AEI are assessments of long-
term correlation for non-linear time series, these two
parameters perform similar sensitivities and specificities
in both classifications. Physiologically, heartbeat time
series of subjects with heart disease (i.e., CHF or AF)
loses its internal self-modulation and performs more
stochastic than that of a healthy subject does.

FIGURE 2. Distributions of averaged periods for IMF 1–5
decomposed from human heartbeat time series for four
groups (i.e., healthy young, healthy elderly, CHF, and AF).
X-axis is the logarithmic averaged period. Data are shown with
means and standard deviations.

TABLE 3. Averaged period of the first IMF for Gaussian
noises with different fractal properties.

Hurst exponent 0.1 0.3 0.5 0.7 0.9

Averaged period 2.746 2.808 2.877 2.956 3.051

FIGURE 3. Analysis results of the database of human
heartbeat time series using AEI and SI in EMD-based intrinsic
mode analysis.
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DISCUSSIONS AND CONCLUSIONS

In this study, we introduced two parameters derived
from spectral characteristics of IMFs for quantifica-
tion of the property of long-term correlation and
internal modulation of human heartbeat time series in
the EMD-based analysis. AEI contributes as a new
assessment for the property of long-term correlation
and performs with higher accuracy than a common
assessment of Hurst exponent derived by R/S analysis
in the numerical experiment using simulated time series
of Gaussian noises with different fractal properties. In
the application of human heartbeat analysis, AEI
performs the final classification results in cardiac sys-
tem identification similar to those derived by a relative
method of DFA published before.14,15 It shows that
the physical property of long-term correlation is

actually a parameter suitable in some cases of verifi-
cations for human’s cardiac systems. However, long-
term correlation only presents a part of the functions
of a human’s cardiac systems for an underlying
mechanism of long-term self-organization.

In this EMD-based approach, we found that the
internal modulation of a human’s heartbeat time series
is more useful than fractal property in diagnosis of
cardiac systems with or without CHF/AF. Physiologi-
cally, SI acts as an assessment for the self-modulation of
a human’s cardiac system. As is well known, interaction
between heartbeat and respiration is reflected as a fun-
damental mechanism of auto-regulation in a cardiac
system. Therefore, a heartbeat time series of a healthy
human is not stochastic but with a basically underlying
modulation. Since both diseases of CHF and AF
weaken this modulation, a human’s heartbeat time
series for a subject with CHF or AF is similar to a
stochastic time series. AEI is suitable to distinguish the
difference between heartbeat time series of subjects with
CHF and AF, but it is not suitable to verify the internal
modulation of human heartbeat time series. Therefore,
heartbeat time series of a subject with CHF/AF is
similar to a stochastic time series (such as Gaussian
noise) with positive long-term correlation (H> 0.5) and
that of a subject with AF is similar to a totally stochastic
time series (Gaussian noise with H = 0.5). In this
approach, functions of EMD lead us to quantify the
long-term correlation of human heartbeat time series
via AEI and SI could be the key parameters to diagnose
ill conditions of a human’s cardiac systems.
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