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The empirical mode decomposition (EMD) is the core of the Hilbert–Huang transform
(HHT). In HHT, the EMD is responsible for decomposing a signal into intrinsic mode
functions (IMFs) for calculating the instantaneous frequency and eventually the Hilbert
spectrum. The EMD method as originally proposed, however, has an annoying mode
mixing problem caused by the signal intermittency, making the physical interpretation of
each IMF component unclear. To resolve this problem, the ensemble EMD (EEMD) was
subsequently developed. Unlike the conventional EMD, the EEMD defines the true IMF
components as the mean of an ensemble of trials, each consisting of the signal with added
white noise of finite, not infinitesimal, amplitude. In this study, we further proposed an
extension and alternative to EEMD designated as the noise-modulated EMD (NEMD).
NEMD does not eliminate mode but intensify and amplify mixing by suppressing the

small amplitude signal but the larger signals would be preserved without waveform
deformation. Thus, NEMD may serve as a new adaptive threshold amplitude filtering.
The principle, algorithm, simulations, and applications are presented in this paper. Some
limitations and additional considerations of using the NEMD are also discussed.

Keywords: Empirical mode decomposition (EMD); ensemble empirical mode decompo-
sition (EEMD); noise-modulated empirical mode decomposition (NEMD).

1. Introduction

The empirical mode decomposition (EMD) is the core of the Hilbert–Huang trans-
form (HHT), which was proposed as an adaptive time–frequency analysis method
for nonlinear and nonstationary data [Huang et al. (1998; 1999)]. The key innova-
tion associated with EMD is to determine the instantaneous frequency of a signal
meaningfully and physically. Using EMD, one can decompose a signal into a set
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of intrinsic mode functions (IMFs) for calculating the instantaneous frequencies
through the Hilbert transform and other variations as discussed by Huang et al.
[2009]. Since its introduction, the method had found wide applications [Huang and
Wu, 2008].

It should be noted, however, that the conventional EMD has some drawbacks.
One of them is the frequent appearance of the mode mixing, which is defined as a
single IMF either consisting of signals of widely disparate scales, or a signal of a
similar scale residing in different IMF components. The mode mixing is typically
caused by the signal intermittency, which not only causes serious aliasing in the
time–frequency distribution, but also makes the physical interpretation of each IMF
component difficult and its meaning obscure [Huang et al. (1998; 1999)]. To resolve
this problem, Huang et al. [1999] proposed the intermittence test to alleviate the
mode mixing effect. Unfortunately, the intermittence test is based on a subjective
selected scale that destroys the adaptive natural of the method. Furthermore, the
selection may not be possible if the timescales in the data are not clearly separate,
hence indefinable.

To overcome the scale separation problem without a subjective intermittence
test, a novel noise-assisted data analysis method, the ensemble EMD (EEMD),
was further developed by Wu and Huang [2009]. The concept of the noise-assisted
data analysis is similar to the studies by Flandrin et al. [2004] and Gledhill [2003],
indicating that noise is not useless but actually useful to data analysis by the EMD.
The EEMD defines the true IMF components as the mean of an ensemble of trials,
each consisting of the signal added to a white noise of finite amplitude. The principle
of the EEMD is based on the noise cancellation characteristics. When the signal
is added to the uniformly distributed white noise, the noise would populate the
whole time–frequency space uniformly with the constituting components of different
scales. In this condition, the bits of the signal of different scales are automatically
projected onto proper scales of the reference established by the white noise in the
background. Different trials may produce noisy results because noise series in each
trial is different. Thus, the cancellation of the added noise through the ensemble
mean of enough trials is used as the true result.

Recently, we had an interesting finding about the use of the noise-assisted EMD.
If we add artificial white noise with infinitesimal amplitude to data and then apply
the EMD to the noise added data, the first IMF component obtained will behave
like the EMD without noise as discussed by Gledhill [2003]. With the noise level
increasing gradually, the smaller amplitude signal in the data that should have
appeared in the first IMF component would be suppressed, but the larger ampli-
tude signals would be preserved without waveform deformation. The resulting IMF
extracted would have severe mode mixing of course, but judiciously adjusting the
noise level actually enables us to achieve an amplitude threshold sensitive filtering.
Though the above procedure seems to be similar to that of the EEMD, the spirit is
very different: here we use the added noise not to eliminate the mode mixing, but to
intensify it. To be effective, the noise amplitude is kept at a much smaller level than
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that of the finite amplitude noise used in the EEMD. As a result, the added noise
amplitude can be increasingly modulated until the small signals we want to sup-
press are removed. This finding may be viewed as an extension of the noise-assisted
data analysis method. We designate it as the noise-modulated EMD (NEMD), for
its potential to help handling the thresholding problems, such as signal rejection or
amplitude filtering. In Sec. 2, we briefly review the theoretical background, includ-
ing EMD and EEMD. Section 3 presents the proposed NEMD method, including
the principle and algorithm design. Section 4 introduces some simulation examples
and practical applications. Section 5 discussed some considerations and limitations
of the NEMD.

2. Theoretical Background

2.1. Empirical mode decomposition

As mentioned in Introduction, the EMD was developed with the aim of determining
the physically meaningful instantaneous frequency of a signal. The details of the
EMD can be found in the previous studies [Huang et al. (1998; 1999)]. Here we
briefly explain the EMD algorithm below.

We first find the local maxima and minima of signal x(t), and use cubic spline
interpolation to obtain its upper and lower envelopes. If the mean of these two
envelopes is d1(t), the difference between the signal and d1(t) is the first component,
h1(t):

h1(t) = x(t) − d1(t). (1)

This is called the sifting process. We have to judge whether h1(t) is an IMF. Ideally,
if the cubic spline interpolation is perfect and there is no gentle hump on the signal
slope, h1(t) should satisfy all IMF requirements. However, in reality imperfect fitting
commonly produces overshoots and undershoots that generate new extrema and
shift or exaggerate the existing ones. Even if the fitting is perfect, humps may
become local extrema after the first round of sifting. The envelope mean may also
differ from the true local mean of the signal for nonstationary data, resulting in
an asymmetric waveform. Therefore, the sifting process has to be repeated k times
until the difference extracted is an IMF. In the second iteration, h1(t) is treated as
the original data in the second sifting process:

h1(t) − d11(t) = h11(t). (2)

The sifting process is repeated k times until we find h1k(t), which is an IMF:

h1(k−1)(t) − d1k(t) = h1k(t). (3)

Then we define

c1(t) = h1k(t) (4)

as the first IMF component (i.e. component C1) for the data. Overall, C1 contains
the finest and the shortest period component of the signal. Subsequently, we can
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subtract c1(t) from the signal:

x(t) − c1(t) = S1(t). (5)

Because residue S1(t) still contains information about components with longer peri-
ods, we treat it as the new original data and apply the same sifting process as
described above. This procedure can be repeated for all subsequent Sj(t) values,
yielding

S1(t) − c2(t) = S2(t), . . . , Sn−1(t) − cn(t) = Sn(t). (6)

Summing Eqs. (5) and (6) finally yields

x(t) =
n∑

i=1

ci(t) + Sn(t). (7)

This indicates that x(t) is decomposed by EMD into n IMFs and a residue Sn(t),
which is the signal trend with at most one extremum or a constant.

If one follows the above-described algorithm, the resulting IMF component could
have mode mixing effect [Huang et al. (1999)], which is defined as any IMF consist-
ing of oscillations of dramatically disparate scales. The mode mixing is often caused
by the intermittency of the driving mechanisms, and it would make the physical
meaning of each IMF component unclear.

2.2. Ensemble empirical mode decomposition

The EEMD has been proposed to establish EMD as a firm dyadic filter bank. At the
same time, it also resolves the mode mixing problem. The principle and the details
of EEMD are given in the paper by Wu and Huang [2009]. The procedure of the
EEMD is as follows: (1) add a white noise series to the data. The noise amplitude
is typically set to be 0.1 times the standard deviation of the original data or higher;
(2) use the EMD to decompose the noise-added data into IMFs; (3) repeat Steps 1
and 2 again and again, but with different white noise series each time; and (4) the
ensemble means of the corresponding IMFs of the decompositions are used as the
final result. The effects of the decomposition using the EEMD are that the added
white noise series cancel each other in the final mean of the corresponding IMFs.
The mean temporal scale of the IMFs would stay within the natural dyadic filter
windows; therefore, EEMD can significantly reduce the chance of the mode mixing
and preserve the dyadic property [Wu and Huang (2009)].

3. Noise-Modulated Empirical Mode Decomposition

3.1. Algorithm

The NEMD can be treated as an extension and variation of the EEMD. The con-
cept of the NEMD came from our pilot studies and observations described below.
When we carried out EEMD of a signal using an infinitesimal noise level instead of
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using finite noise amplitude, the first IMF mode (i.e. C1 component) would behave
like the IMF results without noise as discussed by Gledhill [2003]. It is, however,
interesting to note that if we gradually increase the noise amplitude, the smaller
amplitude signals in the data would be suppressed, but the larger signals would be
preserved without any deformation of the waveform. Consequently, the mode mix-
ing in the resulting IMF is actually intensified and amplified. Interestingly, although
the NEMD is very similar to the EEMD, with infinitesimal level noise added, it can
perform a different function in data analysis as an effective amplitude threshold fil-
ter. The difference between the NEMD and EEMD is just that the amplitude of the
added white noise for the NEMD is much smaller than that for the EEMD. Actu-
ally, the added noise would be considered as ineffective in EEMD. Yet, the added
low-intensity noise amplitude can be modulated incrementally until the small sig-
nals we want to suppress are removed. Therefore, the purpose of using NEMD is
very different from EEMD: it is used not to eliminate mode mixing, but to amplify
it.

In order to implement the NEMD, we designed the algorithm according to the
illustration of Fig. 1 in the following steps: (1) add artificial white noise to the

Fig. 1. Flow chart for the algorithm of the NEMD: (a) the data, (b) the noisy data obtained by
adding white noise to the signal in (a), (c) EMD of the noisy data, and (d) taking component C1
as the result of the NEMD.
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data, and the noise level should be much smaller than the data; (2) apply EMD to
the noise added data, and take the C1 IMF component as the output signal; (3)
observe the C1 signal, and identify whether the performance of the signal rejection is
satisfying for needs; (4) if not satisfying, modulate the added noise level to gradually
increase and repeat Steps 1 and 2 until the small signals we want to remove are
suppressed in the C1 component. Undoubtedly, increasing the noise level added
into the data would result in more signals rejected (i.e. like using a larger threshold
value).

3.2. Basic principle

Ideally, white noise has an infinite bandwidth and hence is likely to contain fluctua-
tions at higher frequencies than those in the data; therefore, the added noise has the
ability to endow the waveform of the data with additional local extrema. Adding
an appropriate level of white noise to the data will change the probability on the
detections of local extrema for large and small amplitude waveforms in the signals.
Waveform for the large amplitude oscillations would have a relative steeper slope
on the waveform; therefore, the extrema of the added noise would not show up.
Whereas those for small amplitude waveforms, the extrema from the noise would
show up and be altered by the added noise and even replaced by the extrema of
the added noise. In this situation, the first IMF component obtained from EMD of
the noise added signals just shows larger amplitude waveforms, whereas the part
corresponding to small amplitude waveforms would be replaced with the noise-scale
baseline. Thus, the IMF extracted would consist of the large amplitude waveforms
mixed with the noise level high-frequency fluctuations portion. Though the resulting
IMF contains severe mode mixing, the small amplitude waveforms are effectively
rejected. Thus, we have in this low noise intensity EEMD, or NEMD, an effective
amplitude threshold filter.

4. Simulations and Applications

4.1. Simulations

Having presented the basic principles and implementation steps, we will use com-
puter simulations to demonstrate and validate the algorithm of the NEMD. The
ultrasonic backscattering model was used as the simulation method for produc-
ing the simulated signals. The reason we used ultrasound data as the test signal
is that the rejection of small signal is necessary in medical ultrasound image for
noise reduction and contrast enhancement as discussed in Tsui et al. [2008; 2009].
The details for the simulation method and the results on the test of the NEMD
algorithm are described as follows, with more details given in Tsui et al. [2008].

The two-dimensional model of ultrasound signal was used to produce ultrasonic
radio-frequency (RF) data to verify the algorithm of the NEMD, as given by

RF = A{[H ⊗ Z] · e−αy + N}, (8)
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where A denotes the gain factor of the echo-receiving system, H represents the
transducer transfer function, and Z is the spatial distribution function of the scat-
terers. Note that Z is essentially a two-dimensional matrix with randomly posi-
tioned delta functions weighted by the backscattering coefficient that describes
the spatial arrangement of the scatterers in the medium. The exponential term in
Eq. (8) accounts for the attenuation effect, with an attenuation coefficient of α, and
N is the signal-independent white noise.

In the following example, we used an ideally simulated RF data as an example,
in which the attenuation and noise effect were not involved in simulations. At first,
an incident wave with a central frequency of 7.5MHz and a bandwidth of 80%
was used to generate the ultrasound RF data. The sampling rate was 100MHz.
Subsequently, we added white noise to the clean RF data to produce noise-added
RF signals with different SNRs. Specifying the power of the clean RF data as 0 dB,
we adjust the SNR of the noise-added RF signal from 40 to 0 dB using the “awgn”
function in MATLAB software.

Figures 2–5 show the original RF data, noise-added data, and C1 IMFs obtained
from NEMD of the noise-added RF signals with SNRs ranging from 40 to 5 dB.
For an SNR of 40 dB, we found that the waveform of the component C1 was nearly
identical to that of the original ultrasonic signal, as shown in Fig. 2. This is because

Fig. 2. The original data, noise-added data, and IMFs obtained from NEMD of the noisy data
for the SNR of 40 dB.
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Fig. 3. The original data, noisy data, and IMFs obtained from NEMD of the noise-added data
for the SNR of 20 dB.

the power of the added noise was much lower than that of the ultrasound signal
when the SNR is 40 dB, and hence did not impact the local characteristics of the
ultrasound signal. This means that the local extrema acquired from the noise-added
RF signal are entirely due to the ultrasound RF signal itself, and hence the C1
signal behaves like the original RF data but with a more symmetric waveform. On
the other hand, we further found that different oscillatory modes of the RF signal
were evident in IMF components C2–C5. The oscillatory frequency decreases with
increasing IMF index. Some of the final components (e.g. C6–C7) are empirically
treated as the signal trends.

For an SNR of 20 dB (Fig. 3), the larger echoes and some background small
signals were extracted from the noise-added RF data to form the C1 component.
Comparison of Figs. 2 and 3 indicates that the noise level affects the results of the
NEMD, which is further confirmed by the C1 IMF results for the noisy signal with
an SNR of 15 dB as shown in Fig. 4. Obviously, adding higher intensity white noise
to the ultrasonic signal results in only the extracted larger signals forming the com-
ponent C1. Specially, the waveform and the corresponding locations of the preserved
signals do not have any significant change. When much higher intensity noise has
been added, most local extrema acquired from the noise-added data would come
from the noise-induced fluctuations, and thus the C1 component simply describes
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Fig. 4. The original data, noisy data, and IMFs obtained from NEMD of the noise-added data
for the SNR of 15 dB.

the noise characteristics to mean that most echo signals are rejected, as shown in
Fig. 5 for the SNR of 5 dB.

The above simulation demonstrated that the NEMD indeed has good ability to
suppress the small amplitude signals without destroying the waveform features of
the preserved large signals. Compared to the conventional threshold filter based on
one specific threshold value, the NEMD may be treated as an adaptive amplitude
threshold filter.

4.2. Applications

Here we introduce practical applications of the NEMD in an ultrasound image.
We carried out image measurements on the cyst in a breast phantom to acquire
the ultrasonic RF signals. The tissue-mimicking breast phantom was constructed
by Professor Ernest L. Madsen, Department of Medical Physics, University of
Wisconsin-Madison. The ultrasound RF signals from the cyst were acquired using
a commercial ultrasound imaging system (Model 2000, Terason, Burlington, MA,
USA), with the raw RF data digitized at a sampling rate of 30MHz. The applied
probe is a wideband linear array with a central frequency of 7.5MHz and 128 ele-
ments (Model 10L5, Terason). The pulse length and the bandwidth were 0.5 µs and
60%, respectively. The lateral beamwidth is about 0.5mm, and the focal length is
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Fig. 5. The original data, noisy data, and IMFs obtained from NEMD of the noise-added data
for the SNR of 5 dB.

adjustable. The signal interpolation was further performed to increase the sampling
rate to 100MHz to be the same as that of simulation. The B-mode image was then
formed using the log-compressed envelope image with a dynamic range of 40 dB.

The typical ultrasound B-mode image of the cyst is shown in Fig. 6(a). It can be
expected that the small echoes due to noise effect or ultrasonic backscattering from
very small and few scatterers in the cyst would reduce the contrast-to-noise ratio
to affect the ability of the B-scan to detect the cyst target (i.e. contrast resolution).
This is because the cyst is theoretically an anechoic area, and therefore there should
not be any returned signals. Now in order to reduce the effect of small signal on
the image quality of the cyst, we used the NEMD to reject the small echoes in
the cyst. For each scan-line, we added white noise by adjusting the signal SNR
to be 25 dB and then applied the EMD of the noise added signal to form the B-
mode images with the same dynamic range, as shown in Fig. 6(b). Evidently, the
small signals are depressed so that the cyst in the B-mode image becomes darker,
improving the image contrast. More importantly, the NEMD process does not cause
any deformation of the waveform features for the preserved significant echoes, as
indicated by Fig. 7. Obviously, the NEMD performs better than the conventional
threshold technique, for NEMD could reject the small backscattering echoes without
waveform distortions.
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(a)

(b)

Fig. 6. B-mode images of the cyst acquired from the breast phantom (a) before and (b) after
applying the NEMD with an SNR of 25 dB.

5. Discussion and Conclusions

This study proposed the NEMD, which is a new noise-assisted data analysis method
based on the conventional EMD and the concept of the improved EEMD. We used
the simulations and experiments to demonstrate the feasibility and practical appli-
cations of the NEMD for improving the image contrast. The main function of the
NEMD is to suppress small signals in the data by modulating the noise level with
infinitesimal amplitude appropriately. The simulation results show that the NEMD
can reject small signals but, at the same time, preserve the waveform of large sig-
nal without distortions. The examples further demonstrated that the NEMD can
indeed have practical applications in the field of biomedical ultrasound. Evidently,
the NEMD can be treated as an adaptive amplitude threshold filter for applications
of signal thresholding process.

However, there may be some considerations and limitations when the NEMD is
used in practice, as discussed below. (1) Different systems would produce different
dynamic ranges and different degrees of noise interference for the data measured



January 19, 2010 16:17 WSPC/244-AADA 00041

36 P.-H. Tsui, C.-C. Chang & N. E. Huang

(a)

(b)

Fig. 7. Ultrasound RF signals acquired from the cyst in the breast phantom (a) before and
(b) after applying the NEMD with an SNR of 25 dB.

from the same target. It means that there is no optimal level for the artificial noise
added into the data to perform the NEMD. The noise level needed for the NEMD
may have to be redetermined or corrected for each specific application when using
different systems. In other words, the applications will have to go through a training
stage to obtain the optimum operation mode for each specific case. (2) The NEMD
may not work when the original noise interference on the measured data is too
strong. Too much noise reduces the signal quality of the data to a near uniformly
noisy field, which would make the output of the NEMD based on the first IMF
component be just a noise-based signal. (3) It has been shown that EMD of a
signal would be influenced by the sampling rate used to digitalize the analog data
[Rilling and Flandrin (2006); (2009)]. According to the Nyquist theorem, a half of
the sampling rate will determine the maximum bandwidth of the added white noise.
Thus, the bandwidth of artificial white noise used for the NEMD is dependent on
the sampling rate. In other words, the sampling rate certainly affects the NEMD.
The above issues need to be further investigated before the NEMD is used as a
reliable signal processing tool.
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The NEMD method introduced here had been used in ultrasonic applications in
the biomedical field with great success [Tsui et al. (2008; 2009)]. The same method
could easily be adapted to other fields such as radar image and general image
analysis and processing. It is with the general applications in mind that we decided
to introduce it here as a new data analysis tool.
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