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Building the mathematical foundation for the empirical mode decomposition is an impor-
tant issue in adaptive data analysis. The task of building such a foundation consists of
two stages. The first is to construct a large bank of basis functions for the time–frequency
analysis of nonlinear and nonstationary signals. The second is to establish a fast adaptive
decomposition algorithm. We survey recent mathematical progress on these two stages.
Related results on piecewise linear spectral sequences and the Bedrosian identity are
also reviewed.
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1. Introduction

Since it was first introduced in Ref. 12, the empirical mode decomposition
(EMD) has been found useful in many engineering areas. Recently, EMD related
mathematical problems attracted much attention from the mathematical commu-
nity.7,16,22–26,29,31–34,36,37,39 These studies aim at better understanding the math-
ematical insight of the algorithm, building a reasonable mathematical foundation
for the method and improving upon it. Establishing the mathematical foundation
for EMD requires us to address two major issues. The first is the construction of a
large bank of basis functions which are suitable for the time–frequency analysis of
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nonlinear and nonstationary signals. The second is the development of fast adap-
tive decomposition algorithms for the representation of a given signal by the basis
functions. Although we have not obtained a complete answer to these issues, some
interesting partial answers have become available as a result of the study which
took place in the last few years. The purpose of this paper is to review the recent
mathematical development in this interesting subject.

A fundamental problem in data analysis is to obtain an adaptive application-
oriented representation for a given data set. EMD is an efficient method for such
adaptive representations. Indeed, the original purpose of EMD is to decompose a
signal into components, each of which has meaningful instantaneous frequency, and
different components correspond to different frequency scales. EMD decomposes
a signal into a finite sum of intrinsic mode functions (IMFs) based on the direct
extraction of the energy associated with various intrinsic time scales. Many exam-
ples of using EMD show that the IMFs obtained from EMD provide physical insights
which are crucial in engineering applications. Due to the fully adaptive nature of
the method, it is particularly suitable for processing nonlinear and nonstationary
signals.

We begin with a review of the notion of instantaneous amplitude and phase
which are basic concepts in the time–frequency analysis of signals. If a signal f can
be written as

f(t) = ρ(t) cos θ(t), t ∈ R, (1.1)

where ρ ≥ 0, then we consider ρ and θ as the instantaneous amplitude and phase of
f , respectively. However, in general, there exist many pairs of ρ and θ with ρ ≥ 0
that satisfy decomposition (1.1).21 A classical way of defining without ambiguity
the instantaneous amplitude and phase of a real signal f ∈ L2(R) is through the
Hilbert transform, which is defined for each function f ∈ Lp(R), 1 ≤ p ≤ ∞, at
t ∈ R as

(Hf )(t) := p.v.
1
π

∫
R

f(s)
t− s

ds :=
1
π

lim
ε→0+

N→∞

∫
ε≤|t−s|≤N

f(s)
t− s

ds, (1.2)

whenever the Cauchy principal value of the above singular integral exists. To form
the analytic signal, we define

Af := f + iHf .

By the theory of the Hilbert transform,5 Af has only non-negative Fourier frequen-
cies. Then Af is further written as

(Af)(t) = ρ(t)eiθ(t), t ∈ R.

Finally, the ρ(t) and θ(t) above are defined as the instantaneous amplitude and
phase of signal f at time t, respectively. The derivative θ′ is regarded as the
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instantaneous frequency of f . This method for obtaining the instantaneous ampli-
tude and frequency of signals is called the analytic method.

When the instantaneous frequency θ′ is non-negative, we say that it is phys-
ically meaningful. Signals should have special properties to ensure that their
instantaneous frequency obtained by the analytic method is physically meaningful.
Therefore, we introduce a class of signals by setting

M := {f ∈ L2(R) : f is real, (Af)(t) = ρ(t)eiθ(t), ρ ≥ 0, θ′ ≥ 0}. (1.3)

Recall that EMD aims at a decomposition of functions ψ having the properties that

(a) ψ has exactly one zero between any two consecutive local extrema;
(b) the local mean of ψ is zero.

Functions with properties (a) and (b) above are called intrinsic mode functions
(IMFs) in Ref. 12. According to Ref. 12, empirically an IMF has physically mean-
ingful instantaneous frequency. To provide more mathematical insight for IMFs,
as a first step we consider functions in M as a basic atom for the Hilbert-Huang
Transform (HHT). For consistence, functions in M are still referred to as intrinsic
mode functions.

Building a mathematical foundation for EMD consists of two steps. The first is
to formulate mathematical characterizations of the functions in M and construct a
large bank of functions in M with explicit expressions. The second is to develop an
adaptive and fast algorithm A for decomposition of a real function f ∈ L2(R) into a
monotone function and a sum of functions in the bank constructed in the first step
with the summand decaying fast. It seems that EMD is a numerical approximation
of the ideal algorithm A.

By far there are few mathematical efforts on the second step. A better under-
standing of EMD from the study of its variations and extensions may provide some
insight into the ideal algorithm A. In Sec. 2, we introduce the recently developed
one-dimensional B-spline EMD7 and two-dimensional finite element based EMD.36

For the first step, the problem for constructing elements in M was proposed by
the first author in 2002. We are interested in finding ρ ∈ L2(R) and θ ∈ C1(R) that
satisfy the nonlinear singular integral equation

[H(ρ(·) cos θ(·))](t) = ρ(t) sin θ(t), t ∈ R (1.4)

subjected to the constraint

ρ(t) ≥ 0,
dθ(t)
dt

≥ 0, t ∈ R.

Along this line, the recent work22 provides some mathematical insight to this prob-
lem. In Sec. 3, we focus on the construction of functions in M. A mathematical
characterization29 of property (a) will be discussed. Our main interest is in recent
results on the singular integral equation (1.4) from Refs. 22, 24, 31 and 39.

In some sense, intrinsic mode functions can be viewed as basis functions for
signal analysis. They generally have nonconstant frequencies. This property partly
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accounts for the importance and efficiency of IMFs in the time–frequency analysis
of nonlinear and nonstationary signals. It also suggests the study of orthonormal
bases for the function space L2(A) with nonconstant frequencies, where A is a
Lebesgue measurable subset of R. We shall review in Sec. 4 the results of Ref. 16
on orthonormal bases

fn := e2πign , n ∈ Z, (1.5)

for L2([0, 1]), where the phase functions gn are piecewise linear on [0, 1], and those
in Refs. 8, 24 and 31 on orthonormal bases with smooth nonlinear phases for L2(R)
and L2([0, 2π]).

The Bedrosian identity is an important mathematical formula in signal analysis.
In particular, it is a useful tool for HHT. A study of the identity helps us better
understand the condition for the following important equality9,12,20,21

[H(ρ(·)eiθ(·))](t) = ρ(t)H(eiθ(·))(t).

Moreover, it contributes to the construction of functions in M. To see this, we
suppose that a unimodular real signal cos θ(·) satisfies

[H(cos θ(·))](t) = sin θ(t), t ∈ R.

By finding a non-negative function ρ ∈ L2(R) such that

H(ρ cos θ(·)) = ρH(cos θ(·)),
we obtain a new function ρ cos θ(·) ∈ M. In Sec. 5, we review recent results in
Refs. 25, 31–33 and 37–39 on the Bedrosian identity. Especially, we present neces-
sary and sufficient conditions for the Bedrosian identity to hold. We draw conclusive
remarks in Sec. 6.

2. The B-Spline EMD and 2-D Finite Element EMD

We review in this section the one-dimensional B-spline EMD and two-dimensional
finite element based EMD developed in Refs. 7 and 36, respectively. In the EMD
algorithm, an important issue is the construction of the local mean function of
a given signal. The original EMD uses cubic spline interpolation to construct the
upper envelop function and lower envelop function of the signal. They are then used
to construct the local mean. However, overshooting of the envelops is often observed
in practical computation. This is because interpolation is not a good method to
compute the envelop functions. To be more specific, we define envelop functions.
For a given class A of functions defined on interval [a, b] and a given function f not
in the class A the upper envelop of f with respect to the class A is defined by

u(x) := inf{g(x): g(y) ≥ f(y), y ∈ [a, b], for all g ∈ A}, x ∈ [a, b].

Likewise, the lower envelop of f with respect to the class A is defined by

�(x) := sup{g(x): g(y) ≤ f(y), y ∈ [a, b], for all g ∈ A}, x ∈ [a, b].
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Due to these definitions, it is not surprising that the cubic spline interpolation
sometimes provide unsatisfactory results for the envelops since it is not realistic to
expect interpolation gives good approximation for minimization or maximization.
To overcome this difficulty, an alternative method for generating a local mean func-
tion was suggested in Refs. 7 and 36. The main purpose of this section is to discuss
this alternative approach.

2.1. A general setting for EMD

We begin with the general setting for EMD described in Ref. 36. This generalization
helps us understand the intrinsic properties of the EMD method and enables us to
present the B-spline EMD and 2-D finite element based EMD in a unified way. Let
f ∈ L2(Rd), d ∈ N. We require to have a compactly supported basis φj , j ∈ Z, for
a subspace of L2(Rd). The subspace is adapted to the given data f . As a result, the
basis functions are also adapted to the given data f and will be used to construct
the local mean surface of f . We also need the set P := {pj : j ∈ Z} of points in
a domain in Rd, which we call the characteristic points of f . They capture certain
features of the given data. For example, they include the local extreme points for the
1-D EMD, and the local extreme and saddle points for the 2-D EMD. Associated
with the set of characteristic points we define a smoothed linear functional of f(pj)
by

λ(pj) := S ∗′ f(pj), (2.1)

where S is a generalized low-pass filter and ∗′ represents a generalized filtering
operation. Mathematically, λ(pj) is a linear functional using values of f at the
characteristic points near pj . Basically, we specify the generalized low-pass filter as
a set of positive-valued weights and the generalized filtering as a weighted sum of
f(pj) and the function values of f at the neighboring characteristic points near pj .
In this way, the produced functional λ(pj) will be smoother than f(pj) since the
local variation of f(pj) is averaged.

The essence of the EMD method is to subtract the local mean from the data so
as to decompose the data into a high frequency and a low frequency component,
namely, the local mean. Using the adaptive basis functions φj , j ∈ Z, and the local
smoothed functionals, we define the local mean of the data f as

m(p) :=
∑
j∈Z

λ(pj)φj(p). (2.2)

Since φj has a compact support and the functional λ(pj) is defined locally, the
local mean capture the local feature of the given data. Note that we avoid using
the “upper envelop” and “lower envelop” in the definition of the local mean
because mathematically they are not well-defined by using spline interpolation,
as we explained earlier.

The EMD method decomposes a signal into a finite sum of IMFs. In a general
case, in particular in the 2-D case, we will not impose a specific definition of an
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IMF. It should be determined by a specific stopping condition in the sifting process
for a specific application. We now describe a general EMD algorithm. We extract
the first intrinsic mode function by the following steps:

(1) Find the characteristic points pj of f and compute values f(pj).
(2) Compute the smoothed set λ(pj) using Eq. (2.1).
(3) Compute the local mean m using Eq. (2.2).
(4) Compute h = f −m. If h satisfies a given stopping condition, stop. Otherwise,

treat h as the data and iterate on h.

The output of this algorithm is the first IMF and we denote it by c1 and specify
r1 := f − c1 as the first residue. By applying the above procedure to the first
residue r1 we obtain the second IMF c2. Repeat this process until a satisfactory
result is obtained. The procedure generates a sequence of IMFs c1, c2, . . . , cN and a
residue function rN if it converges. All numerical results confirm that the algorithm
converges though it has not been proved mathematically. The basic idea of the
EMD is to decompose a signal into the sum of IMFs with different scales and the
residue function so that c1 catches the highest frequency of f , c2 the second highest
frequency of f and rN the lowest frequency of f . Specifically, this procedure yields
a decomposition

f =
∑

j∈NN

cj + rN , (2.3)

where Nn := {1, 2, . . . , n}, n ∈ N. We shall also use Zn := {0, 1, . . . , n − 1} and
Z+ := {j ∈ Z : j ≥ 0}.

A different way of defining the local mean gives a different method for con-
struction of EMD. The local mean can be defined by interpolation, by quasi-
interpolation, or by other approximation approaches. In fact this general setting
covers the envelop approach, the original EMD presented in Ref. 12, the B-spline
approach in Ref. 7 and the 2-D EMD by using finite elements in Ref. 36. Spe-
cific description for the B-spline EMD and the finite element EMD will be given
later. Here we only comment on the relation of the general setting and the original
envelop EMD. For the original EMD developed in Ref. 12, the basis functions are
cubic splines determined by the extreme points of the signal and the smoothed
functional is the coefficients of the cubic splines defined by the cubic spline inter-
polation. In this case, both basis functions and the smoothed set are determined
implicitly. Specifically, following Ref. 12, the local mean of the given data f is
defined by the average of the upper envelop and the lower envelop. Recalling that
both envelops are expressed by the cubic spline interpolation, they may be written
as a linear combination of the B-spline basis. Their coefficients in fact are certain
smoothed functionals of f at the local minima and maxima. Thus, the local mean
so constructed falls into the general setting that we just described. The general
setting allows us to view the EMD in a more general point of view.
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2.2. The one-dimensional B-spline EMD

In the B-spline EMD, the basis functions and the smoothed functionals are defined
explicitly, both being adapted to the given data f . For a given signal f , let σf :=
{σf

j : j ∈ Z} be its extreme points. Note that in this case we choose the characteristic
points as the extreme points of f . The basis functions are chosen accordingly as
B-splines Bj,k,σf defined by the kth order divided difference

Bj,k,σf (t) := (σf
j+k − σf

j )[σf
j , . . . , σ

f
j+k](· − t)k−1

+ , t ∈ R,

where [σj , . . . , σj+k]g denotes the kth order divided difference of function g at nodes
σj , . . . , σj+k. B-splines can also be generated recursively.4 Moreover, it is proved
in Ref. 7 that the Hilbert transform of B-splines has the same recurrence as the
B-splines. Along this line, the translation invariant operators which preserve the
B-spline recurrence are characterized in Ref. 18.

The generalized low-pass filter is defined as the binomial sequence and the
smoothed sequence of the local extrema is the moving average

λ(σf
j ) :=

1
2k−2

∑
l∈Nk−1

(
k − 1
l

)
f(σf

j+l).

The local mean of f is hence given by

Vσf ,kf :=
∑
j∈Z

λ(σf
j )Bj,k,σf .

The local mean defined in this way has certain advantages over the approaches
using envelopes. It overcomes the overshooting problem of the upper and lower
envelopes.7 Moreover, it does not need to solve linear systems which the original
EMD must do.

By the general EMD algorithm, the first IMF of a given signal f is obtained as
follows: let f1,0 := f and compute for j = 1, 2, . . . ,

f1,j := f1,j−1 − Vσf1,j−1 ,kf1,j−1

until ∑
t

|f1,j−1(t) − f1,j(t)|
f2
1,j−1(t)

< SD,

where SD is typically set between 0.2 and 0.3. The last term f1,j is the desired first
IMF of f .

The B-spline EMD is an alternative method for generation of IMFs which avoids
using envelops. Computationally, it does not have to construct two interpolations
(upper envelop and lower envelop) which require to solve linear systems. It only use
multiplications of the basis functions with the functionals. Hence, it requires signif-
icantly less computational cost than the original EMD. It has been demonstrated
in Refs. 7, 15 and 26 by simulated examples and engineering applications that the
B-spline EMD has a comparable performance with the original EMD.
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2.3. The two-dimensional finite element based EMD

We now turn to a discussion of the two-dimensional EMD. In this case, the basis
functions are smoothed linear finite element shape functions and the generalized
low-pass filter is chosen as a weighted average of the function values at the char-
acteristic points around the point of interest, where the characteristic points are
chosen as the local extreme and saddle points of the given data f . This con-
struction is a natural extension of the 1-D B-spline EMD to the 2-D case. It
also overcomes the same overshooting problem arising in using the upper and
lower envelopes of interpolation for the construction of the local mean surface.
Another reason to avoid using 2-D interpolation is that its computational cost can
be huge.

We now review the 2-D finite element based EMD developed in Ref. 36. Sup-
pose that Ω ⊆ R

2 is a closed polygonal domain and f ∈ L2(Ω). Let I denote an
appropriate index set and we denote by ∆ := {pj ∈ Ω: j ∈ I} the collection of
the characteristic points of f . By using the Delaunay method,28 the domain Ω is
partitioned into a triangular mesh with vertices being the characteristic points. In
this triangular mesh, any triangle does not overlap with any other triangles in the
mesh, and a vertex of a triangle is not in the interior of an edge of another tri-
angle in the mesh. Hence, if pj ∈ ∆ is not on the boundary of Ω, then there are
a finite number of points ∆j ⊆ ∆ such that they are the vertices of the polygon
surrounding pj and no other points of ∆ except pj located interior to the poly-
gon. For pj ∈ ∆, we let T� denote a triangle with the vertex pj and two other
points in ∆j and let kj be the cardinality of ∆j . The polygon Pj around pj has the
form

Pj =
⋃

�∈Nkj

T�.

When pj ∈ ∆ is on the boundary of Ω, we need to extend the domain Ω appropri-
ately so that pj is an interior point of the extended domain.

The finite element basis functions are constructed associated with the triangle
partition. Mainly, to each j ∈ I, we assign a basis shape function φj in the following
manner: outside the polygon Pj , φj is equal to zero and on each T� it is a linear
polynomial satisfying the interpolation conditions

φj(p) =
{

1, if p = pj ,

0, if p ∈ ∆j .
(2.4)

Clearly, the function φj ∈ C(Ω) is a piecewise linear polynomial defined on Ω
supported on the polygon Pj . They are finite element shape functions and have
been used extensively in numerical solutions of partial differential equations and
computer aided geometric design. Following the general setting we need smoothed
functionals λ(pj), which are chosen in this case as a weighted average of the values
of the signal f at the neighboring characteristic points of the point pj. A specific
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example of the smoothed functional is as follows:

λ(pj) := αf(pj) + (1 − α)
1
kj

∑
p∈∆j

f(p), (2.5)

where the parameter α controls the degree of the smoothing and it is chosen
empirically.

A local mean surface is constructed accordingly by setting

m̃ :=
∑

pj∈∆

λ(pj)φj . (2.6)

To see the locality of the mean function defined above, we let T be a triangle
element with vertices pi, pj and pk of the triangularization for domain Ω. It is clear
that due to the compact support of the shape functions, only three shape functions
φi, φj and φk are nonzero at an interior point of T . In particular, for p ∈ T , we
observe that

m̃(p) = λ(pi)φi(p) + λ(pj)φj(p) + λ(pk)φk(p). (2.7)

This locality leads to a fast algorithm for computation, since the mean m̃ can be
evaluated locally. Note that however, the surface generated by Eq. (2.6) or (2.7) is
continuous but not smooth (i.e. it is in C0 but not in C1). This may consequently
introduce additional sharp structures into the data. To avoid additional new oscilla-
tions that may introduce artificial frequency information, a smooth local mean m is
desirable for application purposes. We may choose to use smooth higher order finite
elements to overcome this problem. Using higher order finite elements may result in
significant increase of the computational cost. An alternative idea was proposed in
Ref. 36 which is to apply a smoothing filter to m̃ in order to obtain a new smooth
mean m, avoiding the use of higher order finite elements. Namely, we will use a
specially designed bi-cubic spline interpolation m of m̃ so that the new mean m is
smooth, it preserves the crucial properties of m̃, and the additional computational
cost is as small as possible. The interested readers are referred to Ref. 36 for the
construction of the smoothing filter.

The 2-D finite element based EMD has been confirmed by numerical studies to
be a useful and efficient algorithm. Numerical experiments using both simulated
and practical texture images in Ref. 36 show that it is able to separate components
of different scales from images. Moreover, it was used in Ref. 36 to detect defects in
raw textiles. More recent interesting developments in multi-dimensional EMD are
found in Refs. 3, 14, 19 and 35.

3. Characterizations and Constructions of IMFs

Many research results12 show that the Fourier transform is not suitable for the time–
frequency analysis of nonlinear and nonstationary signals. In practice, the Fourier
transform requires that the signal under consideration be stationary and linear.12
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It was observed in Ref. 12 that comparing with nonstationarity, nonlinearity of sig-
nals affects much more the soundness of the time–frequency analysis by the Fourier
transform. A promising method for the time–frequency analysis of stationary but
nonlinear signals is through the circular Hilbert transform, which is defined for each
g ∈ L1

2π at t ∈ [0, 2π] as

(H̃f)(t) := p.v.
1
2π

∫ π

−π

f(t− s) cot
s

2
ds := lim

ε→0+

1
2π

∫
ε≤|s|≤π

f(t− s) cot
s

2
ds

if the Cauchy principal value of the above singular integral exists. Here Lp
2π, 1 ≤

p ≤ ∞, denotes the set of the 2π-periodic functions g whose restriction in [0, 2π]
belongs to Lp([0, 2π]). To give a brief presentation of the method, we introduce

M̃ := {f ∈ L2
2π: f is real, (Ãf)(t) = ρ(t)eiθ(t), ρ ≥ 0, θ′ ≥ 0}, (3.1)

where for each real function f ∈ L2
2π,

Ãf := f + iH̃f.

If a real signal f ∈ L2
2π can be decomposed into a finite sum of functions in M̃ then

a time–frequency–energy distribution of f can be formed by applying the circular
Hilbert transform to each decomposed function in M̃.

It is worthwhile to point out that properties (a) and (b) stated in Sec. 1 are
not sufficient for a 2π-periodic function to belong to M̃. This fact was discovered
in Ref. 29, where it was proved that a real function f ∈ C2[a, b] has property (a) if
and only if it is a solution of a self-adjoint ordinary differential equation

d

dt

(
P
df

dt

)
(t) +Q(t)f(t) = 0, t ∈ (a, b),

where P ∈ C1[a, b], Q ∈ C[a, b] are strictly positive. Several examples of 2π-periodic
functions were constructed in Ref. 29. Those functions are of properties (a) and (b)
but not in M̃.

Similar to that for M, a way of construction of functions in M̃ is to solve the
nonlinear singular integral equation

[H̃(ρ(·) cos θ(·))](t) = ρ(t) sin θ(t), t ∈ [0, 2π] (3.2)

subjected to

ρ(t) ≥ 0,
dθ(t)
dt

≥ 0, t ∈ [0, 2π]. (3.3)

The main purpose of this section is to introduce recent results on singular integral
equations (1.4) and (3.2) from Refs. 22, 25, 31, 34 and 39.

We need some preliminaries on Hardy spaces.10,11,27 We shall use �(z) and
�(z) to denote the real and imaginary parts of z ∈ C, respectively. Let C+ := {z ∈
C:�(z) > 0}, D := {z ∈ C: |z| < 1} and T := {z ∈ C: |z| = 1}. Denote by H(D)
and H(C+) the set of all the holomorphic functions on D and C+, respectively. We
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introduce the Hardy spaces by setting for 0 < p <∞

Hp(D) :=
{
f ∈ H(D): sup

{∫ 2π

0

|f(reit)|pdt: r ∈ (0, 1)
}
<∞

}
and

Hp(C+) :=
{
f ∈ H(C+): sup

{∫
R

|f(x+ iy)|pdx: y > 0
}
<∞

}
.

For p = ∞, we let

H∞(D) := {f ∈ H(D): sup{|f(z)|: z ∈ D} <∞}
and

H∞(C+) := {f ∈ H(C+) : sup{|f(z)| : z ∈ C+} <∞}.
Each function f ∈ Hp(D) or Hp(C+), 0 < p ≤ ∞, has a nontangential boundary
limit in Lp(T) or Lp(R), respectively. The boundary limit is still denoted by f .
With this convention, we call a function f ∈ H∞(D) an inner function provided
that |f | = 1 almost everywhere on T. An interesting class of inner functions on D

is the Blaschke products. Such functions are given by

B(z) := zk
∏
n∈N

|zn|
zn

zn − z

1 − z̄nz
, z ∈ D,

where k ∈ Z+, {zn : n ∈ N} ⊆ D\{0} satisfies that∑
n∈N

(1 − |zn|) <∞.

A characterization for inner functions onD can be found in Refs. 10, 11 and 27. The
Blaschke product and inner function on C+ are obtained from their counterparts
on D through the Cayley transform

K(w) :=
i− w

i+ w
, w ∈ C+,

which is a conformal mapping from C+ to D.
The subsequent characterizations of the singular integral equations (1.4) and

(3.2) were given in Ref. 22.

Theorem 3.1. Let 1 ≤ p ≤ ∞, ρ ∈ Lp
2π be real and θ a real Lebesgue measurable

function on [0, 2π]. Then ρ, θ satisfy the singular integral equation (3.2) if and
only if

ρ(t)eiθ(t) = f(eit), t ∈ [0, 2π]

for some f ∈ Hp(D) with �f(0) = 0. In particular, for the unimodular case that
ρ ≡ 1, (3.2) holds if and only if eiθ(·) is the boundary value of an inner function f

on D such that �f(0) = 0.
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Theorem 3.2. Let 1 ≤ p <∞, ρ ∈ Lp(R) and θ be a Lebesgue measurable function
on R. Then ρ and θ satisfy singular integral equation (1.4) if and only if ρeiθ(·) is
the boundary value of some function in Hp(C+).

A definition of the Hilbert transform of functions in L∞(R) using harmonic
representations of distributions was proposed in Ref. 22. Under this definition,
similar results as those for Eq. (3.2) hold for Eq. (1.4) when p = ∞. More details
for this case can be found in Ref. 22.

Solutions of (1.4) and (3.2) with explicit expression are desirable in engineering
applications. In the unimodular case, an important class of phases θ with explicit
form satisfying Eq. (1.4) or (3.2) are provided by finite Blaschke products (see, for
example, Ref. 27). Here, we consider those on [0, 2π] of the form

eiθ(t) =
∏

j∈Nn

eit − λj

1 − λjeit
, t ∈ [0, 2π], (3.4)

where n ∈ N, λj ∈ [0, 1), j ∈ Nn, and phase functions θ on R determined by

eiθ(t) =
1 + it√
1 + t2

∏
j∈Nn

ei2 arctan t − λj

1 − λjei2 arctan t
, t ∈ R. (3.5)

It can be verified that θ given above have a non-negative first derivative. This
implies that the instantaneous frequency of cos θ(·) obtained by the Hilbert trans-
forms is physically meaningful.

Let θ be specified explicitly by Eq. (3.4) or (3.5). Functions ρ ∈ L2
2π or L2(R)

satisfying Eq. (3.2) or (1.4) can be obtained by solving the Bedrosian identity

H̃(ρ cos θ(·)) = ρH̃(cos θ(·)) (3.6)

or

H(ρ cos θ(·)) = ρH(cos θ(·)). (3.7)

This was carried out in Ref. 24 based on new necessary and sufficient characteriza-
tions for the Bedrosian identities. We summarize the obtained results below.

Proposition 3.3. Let θ be defined by (3.4) with λj ∈ [0, 1), j ∈ Nn. Then a real
ρ ∈ L2

2π satisfies (3.6) if and only if there exists bj ∈ C, j ∈ Zn−1 and bn−1, c ∈ R,

such that

ρ(t) = �
(
eit
∑

j∈Zn
bje

ijt∏
j∈Nn

(1 − λjeit)

)
+ c, t ∈ [0, 2π].

Proposition 3.4. Let θ be given by (3.5) with λj ∈ [0, 1), j ∈ Nn. Then a real
function ρ ∈ L2(R) satisfies (3.7) if and only if there exists bj ∈ C, j ∈ Nn and
c ∈ R such that

ρ(t) =
1√

1 + t2

(
�
( ∑

j∈Nn
bje

i2j arctan t∏
j∈Nn

(1 − λjei2 arctan t)

)
+ c

)
, t ∈ R.
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Similar results to those in the above two propositions were obtained in Ref. 31.
Solutions ρ of Eqs. (3.6) and (3.7) when the phase function θ is defined by a single
Blaschke product were first discovered in Ref. 39.

4. Orthonormal Bases with Nonconstant Frequencies

Motivated by Huang’s work12 on representing nonlinear and nonstationary signals
by adaptive decomposition, the recent papers8,16,24,31 aim at developing orthonor-
mal bases for L2(A) with nonconstant frequencies, where A is a Lebesgue measur-
able subset of R. We start with reviewing the orthonormal bases (1.5) for L2([0, 1])
constructed in Ref. 16 that have piecewise constant frequencies.

The basic concept introduced in Ref. 16 is the spectral sequence. A sequence
of real-valued functions gn, n ∈ Z, defined on [0, 1], is called a spectral sequence
of [0, 1] if the exponential function system fn, n ∈ Z, defined by (1.5) in terms of
gn is an orthonormal basis for L2([0, 1]). In some sense, the EMD is an adaptive
numerical method for the construction of spectral sequences.

The piecewise linear spectral sequence gn with the knot at 1/2 was constructed
in Ref. 16. Specially, it was characterized in Ref. 16 the condition for the phase
functions having the form

gn(t) :=

{
ant+ bn, t ∈ [0, 1

2 ),

cnt+ dn, t ∈ [12 , 1],
(4.1)

where an, bn, cn, dn ∈ R, to be a spectral sequence of [0, 1]. We present below a
main result in Ref. 16.

Theorem 4.1. Suppose that gn, n ∈ Z, is defined by Eq. (4.1) with g0 = 0 and
let G := {gn:n ∈ Z}. If the cardinality #{n ∈ Z\{0}:an = 0} > 0 then gn, n ∈ Z,

is a spectral sequence of [0, 1] if and only if G = {un, vn:n ∈ Z}, where un, vn are
defined by

un(t) :=

{
2nt+ bn, t ∈ [0, 1

2 ),

cnt+ dn, t ∈ [12 , 1],
vn(t) :=

{
2nt+ b′n, t ∈ [0, 1

2 ),

cnt+ d′n, t ∈ [12 , 1],

with constants bn, cn, dn, b
′
n and d′n satisfying the conditions that {cn:n ∈ Z} = 2Z,

cn �= cm for n �= m and (b′n−d′n)−(bn−dn) ∈ Z+ 1
2 . If #{n ∈ Z\{0} : an = 0} = 0

and an = cn, n ∈ Z, then gn, n ∈ Z, is a spectral sequence of [0, 1] if and only if
G = {un, vn : n ∈ Z}, where un and vn are defined by

un(t) :=

{
2nt+ bn, t ∈ [0, 1

2 ),

2nt+ dn, t ∈ [12 , 1],
vn(t) :=

{
(2n+ c)t+ b′n, t ∈ [0, 1

2 ),

(2n+ c)t+ d′n, t ∈ [12 , 1],

with constants bn, dn, b
′
n, d

′
n and c satisfying the conditions that bn − dn ∈ Z, b′n −

d′n ∈ Z + (1 − c)/2 and c ∈ R\2Z.
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It was also discovered in Ref. 16 that the spectral sequences gn, n ∈ Z, of
form

gn(t) :=

{
ant+ bn, t ∈ [0, θ),

cnt+ dn, t ∈ [θ, 1],
(4.2)

where an, bn, cn, dn ∈ R and θ ∈ (0, 1), cannot be continuous except for the classical
case.

Theorem 4.2. Suppose that gn, n ∈ Z, defined by (4.2) with g0 = 0 is a continuous
spectral sequence of [0, 1]. Let G := {gn:n ∈ Z}. Then G = {hn:n ∈ Z} where
hn(t) = nt+ bn, t ∈ [0, 1], bn ∈ R, n ∈ Z.

The classical Walsh system can be constructed from a special piecewise constant
spectral sequence of [0, 1]. This was done in Ref. 16 by setting g0 = 0 on [0, 1] and
for j ∈ Z2n , n ∈ N recursively

g2n+j(t) :=

{
gj(t), t ∈ [tn,2k, tn,2k+1), k ∈ Z2n ,

gj(t) + 1
2 , t ∈ [tn,2k+1, tn,2k+2), k ∈ Z2n ,

where

tn,k :=
k

2n+1
, k ∈ Z2n+1+1.

Theorem 4.3. Let gn, n ∈ Z+, be given as above. Then gn, n ∈ Z+, is a spectral
sequence of [0, 1] and fn, n ∈ Z+, given by

fn(t) := e2πign(t), t ∈ [0, 2π],

is the Walsh system on [0, 1].

The spectral sequences constructed in Ref. 16 are piecewise linear and discontin-
uous. Other classes of nonlinear spectral sequences are desirable. We are particularly
interested in constructing smooth nonlinear spectral sequences, hoping that they
are better than linear spectral sequence of the classical Fourier basis in representing
a nonlinear signal.

Set L2
r(R) := {f ∈ L2(R): f is real}. For the purpose of decomposing an arbi-

trary function in L2
r(R) into a sum of functions in M, Refs. 24 and 31 studied

the construction of orthonormal bases for L2
r(R) with the basis functions coming

from M. To this end, it was first observed in Ref. 24 that such constructions can
be reformulated into the constructions of orthonormal bases for H2(C+). Here we
note that H2(C+) is a Hilbert space with the inner product

〈f, g〉H2(C+) :=
∫

R

f(t)g(t)dt, f, g ∈ H2(C+).
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Theorem 4.4. Let ρj ∈ L2(R) be non-negative and θj real Lebesgue measurable
functions on R+, j ∈ Z+. Functions ρj cos θj , ρj sin θj , j ∈ Z+, satisfy

H(ρj(·) cos θj(·))(t) = ρj(t) sin θj(t), t ∈ R, j ∈ Z+ (4.3)

and constitute an orthonormal basis for L2
r(R) if and only if there exists an

orthonormal basis {Mj ∈ H2(C+): j ∈ Z+} for H2(C+) such that

Mj(t) =
1√
2
ρj(t)eiθj(t), t ∈ R, j ∈ Z+.

In light of the above theorem, two general methods of constructing orthonormal
bases for H2(C+) were proposed in Ref. 24. The first one of them is presented
below.

We denote for an f ∈ H∞(C+) by H2
f(C+) the Hilbert space completed upon

the linear space of functions in H2(C+) under the inner product

〈g, h〉H2
f (C+) :=

∫
R

g(t)h(t)|f(t)|2dt, g, h ∈ H2(C+).

Theorem 4.5. Suppose that f1, f2 ∈ H2(C+) satisfy that f1/f2 ∈ H∞(C+) and
f1 is an outer function. If ej ∈ H2(C+), j ∈ Z+, form an orthonormal basis for
H2

f1/f2
(C+), then (f1/f2)ej , j ∈ Z+, form an orthonormal basis for H2(C+).

To present the second one, we let the finite Blaschke product associated with
a finite number of points zj ∈ C+, j ∈ Nn, be the analytic function f on C+

defined by

f(z) :=
∏

j∈Nn

z − zj

z − zj
, z ∈ C+.

The construction starts with the selection of a sequence of functions fn ∈ H∞(C+),
n ∈ N, with the properties that fn(i) = 0 and

fn(t) =
(
hn

gn

)
(t), t ∈ R, n ∈ N,

where hn and gn are analytic functions on C+ with gn having at least one but a finite
number of zeros in C+. We then let bn be the finite Blaschke product associated
with the zeros of gn in C+, n ∈ N. Finally, we define

β0(z) :=
1√
π

1
1 − iz

, βn(z) :=
1√
π

1
1 − iz

fn(z)
∏

j∈Nn−1

bj(z), z ∈ C+, n ∈ N.

(4.4)

Here we denote N0 := ∅. The following result proved in Ref. 24 ensures that we
obtain an orthogonal sequence in H2(C+).

Theorem 4.6. The functions βn, n ∈ Z+, constructed by Eq. (4.4) are orthogonal
in H2(C+).
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Completeness of a basis constructed in Theorem 4.6 should be analyzed based
on the particular choice of fn, n ∈ N.

Two explicit examples of orthonormal bases for L2
r(R) followed from the two

general constructions, Theorems 4.5 and 4.6, were provided in Ref. 24. To introduce
the first one, we fix a ∈ C+ and ar := �(a), ai := �(a), b := K(a) and

ν :=
1√
π

√
1 − |b|2
|1 + b| .

Also denote for each λ ∈ D by ζλ the real function on [0, 2π] defined by

eis − λ

1 − λ̄eis
= eiζλ(s), s ∈ [0, 2π].

It can be computed that

ζ′λ(s) =
1 − |λ|2

1 − 2�(λe−is) + |λ|2 , s ∈ (0, 2π).

Setting

ρj(t) :=
ν√

(t− ar)2 + a2
i

, θj(t) := jζb(2 arctan t)+arctan
t− ar

ai
, t ∈ R, j ∈ Z+,

we obtain that for t ∈ R, functions

(ρj cos θj)(t) =
νai

(t− ar)2 + a2
i

cos(jζb(2 arctan t))

+
ν(ar − t)

(t− ar)2 + a2
i

sin(jζb(2 arctan t)),

and

(ρj sin θj)(t) =
ν(t− ar)

(t− ar)2 + a2
i

cos(jζb(2 arctan t))

+
νai

(t− ar)2 + a2
i

sin(jζb(2 arctan t)),

j ∈ Z+, form an orthonormal basis for L2
r(R) that satisfies (4.3) and θ′j > 0, j ∈ Z+.

To prepare for the second example, we choose pairwise distinct dn ∈ C+, n ∈ N

that satisfy ∑
n∈N

(1 − |K(dn)|) = +∞.

Set dn,r := �(dn), dn,i := �(dn), bn := K(dn), n ∈ N, and

ωn := ζ0 +
∑

j∈Nn−1

ζbj , n ∈ N.
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The following functions

1√
π

1
1 + t2

,
1√
π

t

1 + t2√
dn,i

π

dn,i

(t− dn,r)2 + d2
n,i

cos(ωn(2 arctan t))

+

√
dn,i

π

dn,r − t

(t− dn,r)2 + d2
n,i

sin(ωn(2 arctan t)), n ∈ N

and √
dn,i

π

t− dn,r

(t− dn,r)2 + d2
n,i

cos(ωn(2 arctan t))

+

√
dn,i

π

dn,i

(t− dn,r)2 + d2
n,i

sin(ωn(2 arctan t)), n ∈ N,

form an orthonormal basis for L2
r(R). Clearly, the phase of each of the basis func-

tions has a positive derivative.
We remark that Theorems 4.4, 4.5, and 4.6 were extended for L2

2π in Ref. 24.
Explicit examples satisfying the general constructions can be found, for example,
in Refs. 8 and 31. Fast algorithms of decomposing an arbitrary function in L2

2π into
a sum of the basis functions were developed in Ref. 34.

5. The Bedrosian Identity

The Bedrosian identity is a formula to compute the Hilbert transform of the product
of two functions. It plays an important role in the development of HHT and other
areas of signal processing.12 In connection with the development of EMD, there has
been significant interest in understanding to what extent the Bedrosian identity
holds. Studies on variations and extensions of the Bedrosian identity can be found
in Refs. 6, 7, 23, 25, 30–33 and 37–39. In this section, we review several important
results in this direction.

The classical Bedrosian identity is

[H(fg)](x) = f(x)(Hg)(x), a.e. x ∈ R, (5.1)

where f, g ∈ L2(R). In Ref. 1, Bedrosian gave a sufficient condition for Eq. (5.1). To
state the important result, we need to introduce the Fourier transform F defined
for each f ∈ L2(R) at ξ ∈ R as

f̂(ξ) := (Ff)(ξ) :=
∫

R

f(x)e−iξx dx.

We also denote by supp f the support of a Lebesgue measurable function f on Rd,
d ∈ N.
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Theorem 5.1. Let f, g ∈ L2(R). If either supp f̂ ⊆ [−a, a], supp ĝ ⊆ (−∞,−a]∪
[a,∞) for some a ∈ R+ := [0,∞) or supp f̂ ⊆ R+, supp ĝ ⊆ R+ then identity (5.1)
holds.

The above theorem is known as the Bedrosian theorem and has wide appli-
cations in time frequency literature.9,12,21 Recent mathematical interests in the
Bedrosian identity are motivated by Ref. 37, which studied the necessary and suffi-
cient conditions for which the Bedrosian identity is valid. The first characterization
for functions that satisfy the Bedrosian identity (5.1) was developed in Ref. 37,
which we present below.

Theorem 5.2. If f, f ′, g ∈ L2(R) then the Hilbert transform of function fg satis-
fies the Bedrosian identity (5.1) if and only if∫ 0

−1

∫
R

ξ

t2
eixξ(t+1)/tf̂

(
ξ

t

)
ĝ(ξ)dξ dt = 0. (5.2)

A sufficient condition was derived from (5.2) in the same paper, which states
that if f, g ∈ L2(R) are such that

µ({tξ: ξ ∈ supp f̂ , t ∈ [−1, 0]} ∩ supp ĝ) = 0 (5.3)

then the Bedrosian identity (5.1) holds, where µ denotes the Lebesgue measure on
R. The classical Bedrosian theorem is a special case of this result.

The significance of Theorem 5.2 is that it serves as a base for further study of
the Bedrosian identity. Motivated by Theorem 5.2, a new necessary and sufficient
condition was proved in Ref. 39.

Theorem 5.3. If f, g ∈ L2(R) then the Bedrosian identity (5.1) holds if and
only if ∫

R+

(τ∗ξ f̂)(η)ĝ(−η)dη = 0, ξ ∈ R+ (5.4)

and ∫
R−

(τ∗ξ f̂)(η)ĝ(−η)dη = 0, ξ ∈ R− := (−∞, 0], (5.5)

where τ∗ξ is the adjoint of the translation operator τξ that is defined for each ξ ∈ R

and f ∈ L2(R) by τξf := f(· − ξ).

It can be seen by Theorem 5.3 that the Bedrosian identity (5.1) is closely related
to the closed left translation invariant subspace of L2(R+), that is, the closed sub-
space M ⊆ L2(R+) such that τ∗y (M) ⊆ M for each y ∈ R+. By the similarity
between (5.4) and (5.5), we use (5.4) for explanation. For each h ∈ L2(R) we set
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h+ := h · χR+ and h− := h · χR− . If supp f̂ ⊆ [−a, a] for some a ∈ R+ then

span {τ∗y f̂+: y ∈ R+} ⊆ Ma := {h ∈ L2(R+): supph ⊆ [0, a]}.
The Bedrosian theorem is essentially a consequence of the fact that Ma is a closed
left translation invariant subspace of L2(R+). Studies on other closed left transla-
tion invariant subspaces of L2(R+) would yield more sufficient conditions for the
Bedrosian identity. In particular, an investigation in Ref. 39 on the condition for
span {τ∗y f̂+: y ∈ R+} to be finite dimensional results in a class of functions f, g
satisfying the Bedrosian identity (5.1).

Based on Theorem 5.3, a class of functions f, g ∈ L2(R) with explicit expres-
sions that satisfy the Bedrosian identity (5.1) was constructed in Ref. 39. As a
consequence, it was observed there that the sufficient conditions in the Bedrosian
theorem 5.1 are not necessary for the Bedrosian identity to hold. To see this, we
present one pair of f, g in this class. Set

f(t) :=
1

π(1 + t2)
, and g(t) :=

1
π

1 − 2t2

4 + 5t2 + t4
, t ∈ R.

The Fourier transforms of f and g are given by

f̂(ξ) = exp(−|ξ|) and ĝ(ξ) = exp(−|ξ|) − 3
2

exp(−2|ξ|), ξ ∈ R.

It can be verified directly that Eqs. (5.4) and (5.5) are satisfied. Therefore, f and
g given above satisfy the Bedrosian identity (5.1) while have the property that
supp f̂ = supp ĝ = R.

Surprisingly, the following necessity of the Bedrosian theorem was obtained in
Ref. 38.

Theorem 5.4. If f, g ∈ L2(R) satisfy the Bedrosian identity (5.1), supp f̂ ⊆
[−a, b] for some a, b ∈ R+ and endpoints −a, b are in supp f̂ then supp ĝ ⊆
R\[−b, a].

The above theorem might be interpreted as that if f ∈ L2(R) is of low Fourier
frequencies then for the Bedrosian identity (5.1) to hold, it is necessary and suffi-
cient that g has high Fourier frequencies. Theorem 5.4 was first proved in Ref. 39
under the additional assumption that f̂ · χ[−a,b] is the restriction on [−a, b] of a
nontrivial real-analytic function. Another necessity of the Bedrosian theorem was
observed in Ref. 33. Specifically, it was shown there that a bounded linear transla-
tion invariant operator on L2(Rd) satisfies the Bedrosian theorem if and only if it is
a linear combination of the identity operator and the partial Hilbert theorems. In
the one-dimensional case, it states that the Hilbert transform is essentially the only
bounded linear translation invariant operator on L2(R) that satisfies the Bedrosian
theorem.

Finally, we mention some recent work on the Bedrosian identity for Lp

functions.25,31,38 The Bedrosian theorem for Lp functions was established in
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Refs. 25 and 38. The characterization in Theorem 5.3 was extended to Lp func-
tions in Ref. 38. Reference 31 obtained another characterization in the time
domain.

6. Conclusion

EMD and the classical Fourier analysis are two different methods for data analysis.
There is a large gap between them. EMD is very adaptive to the data under con-
sideration but it lacks mathematical justification. On the other hand, the classical
Fourier analysis has a rigorous mathematical foundation, but it is a linear process
and is not adaptive to the data under consideration. Recent mathematical develop-
ments on EMD focused on bridging the gap between EMD and the classical Fourier
analysis. There were two major directions. The first direction was to modify the
EMD so that it is less “empirical” and more “mathematical”. The second direc-
tion was to modify the classical Fourier analysis so that it is more adaptive and
more nonlinear. Research results obtained so far in this area are interesting and
insightful, although there is much more ahead to be done.
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