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In this paper, based on an adaptive IIR notch filter and a robust Chinese remainder
theorem (CRT), we propose an adaptive frequency estimation algorithm from multiple
undersampled sinusoidal signals. Our proposed algorithm can significantly reduce the
sampling rates and provide more accurate estimates than the method based on adaptive
IIR notch filter and sampling rates above the Nyquist rates does. We then present sim-
ulation results to verify the performance of our proposed algorithm for both stationary
and nonstationary signals.
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1. Introduction

Frequency estimation of a sinusoidal signal contaminated in an additive noise is a
classical problem and has many practical applications in, for example, power, radar,
sonar, communication, and biomedical engineering systems. There are two classes of
frequency estimation algorithms. One class is mainly for off-line processing, which
is based on power spectral estimation techniques including traditional periodogram
and super-resolution algorithms such as Capon and MUSIC algorithms.1,2 These
methods can be applied to achieve more accurate frequency estimations but usu-
ally require a higher computational cost. The second class is for on-line processing
and applies to frequency estimation and tracking for nonstationary signals. This
class of on-line methods consists of two types. One type is adaptive FIR filters
that usually require high filter orders, i.e. large number of coefficients, to obtain a
satisfactory sharp cutoff frequency. The other type is adaptive IIR filters,3,4 adap-
tive IIR notch filters, in particular. An adaptive IIR notch filter is a filter whose
magnitude response vanishes at a particular value (the notch frequency f0) on the
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unit circle, and whose magnitude response is nearly constant at other points on the
unit circle. A good notch IIR filter can be obtained by only using a second-order
approximation. In the meantime, a complementary bandpass filter may be realized
by subtracting a notch filter output from its input, which may yield a sharp cut-
off frequency and allow the retrieval of a sinusoidal component of the input while
the background noise is significantly reduced. Adaptive IIR notch filters have wide
applications, in, for example, sonar.3,4 One of the adaptive IIR notch filter designs
is to use lattice structure,3–6 where only a minimum number of filter coefficients
are needed to be adapted and it allows independent tunings of the notch frequency
and the attenuation bandwidth compared with a direct form structure.

It is well-known that frequencies can be uniquely determined from a sampled
signal when the sampling rate is above the Nyquist rate. If the sampling rate is
below the Nyquist rate, it is in general not possible to uniquely determine the
frequencies from a single sampled waveform. If there are multiple sampled copies of
a single signal with different sampling rates, then the frequencies may be uniquely
determined even all the sampling rates are below the Nyquist rate7,8 by using
(generalized) Chinese remainder theorem (CRT). The basic idea is that with the
undersampled waveforms, folded frequencies (remainders) can be detected and the
CRT can be used to determine the true frequencies from the detected folded fre-
quencies/remainders. However, it is well known that the conventional CRT is not
robust in the sense that a small error in its remainders may cause a large error
in the solution and it is often that the remainders have errors due to the noisy
and nonstationary environment in practice that is particularly the case when an
adaptive IIR notch filter is used. This means that the conventional CRT may not
provide a desired solution in practice. Recently, we have developed a robust CRT
and the robust CRT provides a robust frequency estimation10 when additive noise
is concerned in a sinusoidal signal and the DFT is used to determine the folded
frequencies/remainders.

In this paper, we propose an adaptive frequency estimation algorithm from mul-
tiple undersampled waveforms. In this algorithm, we first apply several adaptive IIR
notch filters to estimate the folded frequencies (remainders) from several sampled
copies of a single signal waveform with different undersampling rates. We then esti-
mate the signal frequency using the robust CRT from these detected folded frequen-
cies. Note that the estimated frequencies from sampled signals in the discrete-time
domain are normalized frequencies in the range [0, 0.5] and then the true frequen-
cies of the analog signals are the product of the estimated normalized frequencies
with the sampling frequencies. Since the estimated normalized frequencies are most-
likely not accurate in practice, the errors may be magnified by the sampling fre-
quencies. Therefore, when the sampling frequencies are reduced, the accuracy of the
estimated analog frequencies is increased. This is another advantage of our proposed
algorithm with low sampling rates. We then present simulation results to illustrate
the effectiveness of the proposed adaptive algorithm for both stationary and non-
stationary signals. Our simulation results show that our proposed algorithm cannot
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only reduce the sampling rates significantly but also improve the analog frequency
estimation accuracy significantly compared to the one using the adaptive notch
filter with sampling rate above the Nyquist rate.

The remaining of this paper is organized as follows. In Sec. 2, we first briefly
describe the problem, introduce the frequency estimation algorithm using adaptive
IIR lattice notch filter and the robust CRT, and then present our adaptive frequency
estimation algorithm from undersampled waveforms. In Sec. 3, we present some
simulation results. In Sec. 4, we conclude this paper.

2. Adaptive Frequency Estimation with Low Sampling Rates

Let us first describe the problem.

2.1. Problem description

Consider a noisy sinusoidal signal with an unknown frequency f0 and amplitude A:

x(t) = A cos(2πf0t + θ) + w(t), (1)

where θ is the phase that is uniformly distributed between 0 and 2π and w(t) is an
additive (white or colored) noise. Its sampled waveform x(n) with sampling rate
fs is:

x(n) = A cos(2πnf0/fs + θ) + w(n/fs). (2)

In order to uniquely determine the frequency, the sampling frequency fs has to be
at least as twice large as the signal frequency, i.e. above the Nyquist rate. If the
signal frequency f0 is high, the sampling frequency fs has to be high. However,
in many practical applications, low sampling frequencies are of great interest: (i)
low sampling frequencies may reduce the hardware cost; (ii) in some cases only
low sampling frequencies are available; (iii) the signal frequencies of interest may
change (unknownly) in an nonstationary environment while the sampling frequency
is fixed; (iv) as mentioned in Sec. 1, a lower sampling frequency leads to a less error
in an analog frequency estimate from a normalized frequency estimate of sampled
discrete-time signals.

Although for a single sampled signal with a low sampling rate (lower than the
Nyquist rate called undersampling), it is not possible to uniquely determine the
signal frequency, we next propose to use multiple sampled copies of a single signal
with multiple low sampling rates M1, M2, . . . , ML in Hertz

xi(n) = Ai cos(2πnf0/Mi + θ) + w(n/Mi), (3)

for i = 1, 2, . . . , L, where Mi � f0. In this case, for each i, 1 ≤ i ≤ L, the folded
frequency f0,i = f0 − niMi for an integer ni such that 0 ≤ f0,i < Mi can only be
estimated from the ith undersampled signal copy xi(n). For each sampled signal
copy xi(n), we next propose to use an adaptive lattice IIR notch filter to estimate
the frequency (folded frequency in this undersampling case).
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2.2. Adaptive lattice IIR notch filter

As we mentioned in Sec. 1, due to the low computational cost and the adaptivity
for nonstationary signals, we next consider and introduce adaptive IIR notch filters.
The transfer function H(z) of an adaptive IIR notch filter with lattice structure
can be expressed as3:

H(z) =
1 + sin θ2

2
1 + 2 sin θ1z + z2

1 + 2 sin θ1(1 + sin θ2)z + sin θ2z2
, (4)

where

θ1 = 2πf0/fs − π/2, (5)

sin θ2 =
1 − tan(B/2)
1 + tan(B/2)

, 0 < θ2 < π/2, (6)

where f0 is the notch frequency and B is the 3 dB attenuation bandwidth. From
the above properties for the parameters θ1 and θ2, the independent tunings of the
notch frequency and attenuation bandwidth are possible. When the attenuation
bandwidth parameter θ2 is under-held constant that is given and some initializations
of x1(0), x2(0) and θ1(0) are given, we can use the following formulas to tune the
notch frequency parameter θ1. When x1(n) and x2(n) are calculated and x(n) is
the input data, g1 and g2 can be calculated via Eq. (7) below, µ(n) is calculated
via Eq. (11), and y(n) is calculated via Eq. (8). With θ1(n) and µ(n), θ1(n+1) can
be calculated via Eq. (9) and then, x1(n + 1) and x2(n + 1) can be calculated via
Eq. (10), which turns to next time n + 1.

[
g1

g2

]
=

[
cos θ2 − sin θ2

sin θ2 cos θ2

] [
x(n)
x2(n)

]
, (7)

y(n) = (1/2)[x(n) + g2], (8)

θ1(n + 1) = θ1(n) − µ(n)y(n)x1(n), (9)[
x1(n + 1)
x2(n + 1)

]
=

[
cos(θ1(n + 1)) − sin(θ1(n + 1))
sin(θ1(n + 1)) cos(θ1(n + 1))

] [
g1

x1(n)

]
, (10)

µ(n) =
µ0∑n

k=0 λn−k[x1(k)]2
, 0 � λ < 1, (11)

where x(n) and y(n) are the input and the output of the adaptive filter, respectively,
µ(n) is a variable step-size parameter, µ0 > 0 is a given initial step-size, and λ is
a forgetting factor. For the stability of the algorithm at lower SNR, we propose to
use the following steady variable step-size:

µ(n) =
µ0

c +
∑n

k=0 λn−k[x1(k)]2
, 0 � λ < 1, (12)
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where c > 0 is a factor controls the steady of algorithm at low SNR. With the
adaptively calculated θ1(n) above, the final estimate of f0 is

f̂0 = f̂0(n) =
(θ1(n) + π/2)fs

2π
(13)

at the nth step. From the above adaptive frequency estimation, one can see that
an estimation error in θ1(n) from the adaptive IIR notch filter will be magnified by
the sampling frequency fs. Thus, a smaller sampling frequency may lead to a lower
analog frequency estimation error.

2.3. Robust CRT

We now describe the robust CRT we recently obtained in Ref. 10 and the following
robust CRT is self-contained. Let N be a positive integer that corresponds to f0

in the above frequency estimation problem, 0 < M1 < M2 < · · · < ML be the L

moduli that correspond to the sampling rates, and r1, r2, . . . , rL be the L remainders
of N , i.e.

N ≡ ri mod Mi or N = niMi + ri, (14)

where 0 ≤ ri < Mi and ni is an unknown integer, for 1 ≤ i ≤ L. It is known that N

can be uniquely reconstructed from its L remainders ri if and only if 0 ≤ N < lcm
(M1, M2, . . . , ML), where lcm stands for the least common multiple. The problem
here is how to robustly reconstruct N when the remainders ri have errors:

0 ≤ r̂i ≤ Mi − 1 and |r̂i − ri| ≤ τ, (15)

where τ < min1≤i≤L Mi is the maximal error level, called remainder error bound
and the erroneous remainders r̂i correspond to the folded frequency estimates f̂0

in Eq. (13) from the ith undersampled signal copy xi(n) for each i with 1 ≤ i ≤ L.
We now want to reconstruct N from these erroneous remainders r̂i and the known
moduli Mi. With these erroneous remainders, Eq. (14) becomes

N = niMi + r̂i + �ri, 1 ≤ i ≤ L, (16)

where ni are unknown and �ri = ri − r̂i denote the errors of the remainders. From
Eq. (15), |�ri| ≤ τ . The basic idea for our robust CRT is to accurately determine
the unknown integers ni in Eq. (16) which are the folding integers that may cause
large errors in the reconstructions if they are erroneous. The robust CRT we recently
obtained in Ref. 10 is as follows.

Let M denote the greatest common divisor (gcd) of all the moduli Mi. Then,

Mi = MΓi, 1 ≤ i ≤ L, (17)

and all Γi, 1 ≤ i ≤ L, are co-prime, i.e. the gcd of any pair Γi and Γj for i �= j is 1.
For 1 ≤ i ≤ L, let

γi
∆= Γ1 · · ·Γi−1Γi+1 · · ·ΓL, (18)
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where γ1
∆= Γ2 · · ·ΓL and γL

∆= Γ1 · · ·ΓL−1. Since M1 < M2 < · · · < ML, we have
Γ1 < Γ2 < · · · < ΓL.

For each i with 2 ≤ i ≤ L, define

Si
∆=

{
(n̄1, n̄i) = argminn̂1=0,1,...,γ1−1

n̂i=0,1,...,γi−1
|n̂iMi + r̂i − n̂1M1 − r̂1|

}
, (19)

and let Si,1 denote the set of all the first components n̄1 of the pairs (n̄1, n̄i) in set
Si, i.e.

Si,1
∆= {n̄1 | (n̄1, n̄i) ∈ Si for some n̄i} (20)

and define

S
∆=

L⋂
i=2

Si,1. (21)

Then, we have the following result.

Theorem 1. If

0 ≤ N < lcm(M1, M2, . . . , ML) = MΓ1Γ2 · · ·ΓL (22)

and

M > 4τ (23)

then, set S defined above contains only element n1, i.e. S = {n1}, and furthermore
if (n1, n̄i) ∈ Si, then n̄i = ni for 2 ≤ i ≤ L, where ni, 1 ≤ i ≤ L, are the true
solutions in Eq. (16).

For the completeness, its proof is in Appendix. When the folding integers ni in
Eq. (16) are accurately solved, the unknown N can be estimated as

N̂ =

[
1
L

L∑
i=1

(niMi + r̂i)

]
(24)

where [·] stands for the rounding integer (rounding to the closest integer) and the
estimate error is thus upper bounded by

|N − N̂ | ≤ τ. (25)

The above estimate error of N is due to the remainder errors ri − r̂i that has the
maximal level τ . One can clearly see that this reconstruction is robust when the
gcd of all the moduli is not 1 and thus called robust CRT. Although the above
robust CRT is based on 2-D searchings in Eq. (19), a fast algorithm based on 1-D
searchings has been obtained in Ref. 10.
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2.4. Adaptive frequency estimation from undersampled waveforms

using robust CRT and adaptive notch filter

After the above adaptive IIR notch filter and robust CRT are described, our pro-
posed adaptive frequency estimation from undersampled waveforms is quite simple.
For each of the multiple sampled copies xi(n) = x(n/Mi) with undersampling rates
fsi = Mi in Eq. (3), the adaptive IIR notch filter described in Sec. 2.2 is applied
and an estimate r̂i = f̂0,i(n) in Eq. (13) at stage n is:

r̂i =
(θ1(n) + π/2)fsi

2π
=:

arccos(cos(θ1(n) + π/2))
2π

Mi, (26)

for 1 ≤ i ≤ L. From these estimated folded frequencies/remainders r̂i, 1 ≤ i ≤ L,
the robust CRT described in Sec. 2.3 is applied to get an estimate N̂ (corresponds
to f̂0) of the integer N (corresponds to f0). Note that the arccos(cos) function
used in Eq. (26) is to ensure the correct range of an estimate from the adaptive
algorithm. Interestingly, although the remainders r̂i used in the robust CRT in
Sec. 2.3 are integers, the robust CRT works and Theorem 1 still holds when the
estimated folded frequencies r̂i in Eq. (26) are reals since they can be plugged into
Eq. (19) to find the sets Si no matter they are integers or reals. When r̂i are not
integers, the estimate N̂ in Eq. (24) does not need to be rounded to an integer and
thus becomes

f̂0 = N̂ =
1
L

L∑
i=1

(niMi + r̂i) , (27)

after the folding integers ni are determined in Theorem 1.
A remark is that the major difference of the frequency estimation method pro-

posed between this paper and Ref. 10 is that the proposed method in this paper is
on-line and adaptive, while the one in Ref. 10 is not. Our proposed adaptive fre-
quency estimation from multiple undersampled waveforms is illustrated in Fig. 1.
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Fig. 1. Adaptive frequency estimation with multiple undersampled waveforms.
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3. Simulation Results

In all the simulations in this section, the parameters in the adaptive IIR notch filters
are: x1(0) = x2(0) = 0, µ0 = 0.03, θ2 = 0.45π, θ1(0) = 1.4π, c = 2 and λ = 0.98 in
Eq. (12). The number of signal samples used is always 6000 and the additive noise
is white Gaussian. Each result is based on 1000 Monte-Carlo trials.

We consider two examples. In Example 1, we consider an unknown but fixed
frequency, f0 = N = 120KHz. We compare three cases: Case (i) adaptive IIR notch
filters and robust CRT with multiple undersampling rates; Case (ii) adaptive IIR
notch filter with sampling rate above the Nyquist rate; Case (iii) adaptive IIR notch
filters and the conventional CRT with multiple undersampling rates. In Case (i),
two sampling rates M1 = 17 M = 17,000Hz and M2 = 19 M = 19,000Hz with
M = 1000. Clearly frequency f0 falls in the range Eq. (22) in the robust CRT. In
Case (ii), the sampling rate fs = 10f0 = 1.2MHz. In Case (iii), the two sampling
rates are M1 = 16,993Hz and M2 = 1,9001Hz that are close to the two sampling
rates used in Case (i) but they are co-prime in order to use the conventional CRT.
One can see that the sampling rates in Case (i) are over 6 times less than the signal
frequency.

The SNR for Figs. 2 and 3 is 0 dB. Figure 2(a) shows the mean normalized error
E(|f̂0,1 − f0,1|/fs1) for the first undersampling in Case (i) and Fig. 2(b) shows the
mean normalized error E(|f̂0 − f0|/fs) for Case (ii) with sampling rate above the
Nyquist rate and both use the adaptive IIR notch filtering. One can see from these
two figures that the normalized frequency errors are in the same level and thus
a smaller sampling frequency leads to a smaller frequency estimation error in the
analog frequency f0, which can be seen from Fig. 3 too.

Figure 3(a) shows the mean error of the estimated analog frequency f̂0 using
the robust CRT and the two estimated folded frequencies from the adaptive IIR
notch filters with the two undersampled rates in Case (i). Figure 3(b) shows the
mean error of the estimated analog frequency f̂0 using the adaptive IIR notch filter
with sampling rate above the Nyquist rate in Case (ii). One can see that there is an
order of magnitude difference in the two cases and the undersampled case is much
better.

For Case (iii), the estimated folded frequencies using adaptive IIR notch filter is
shown in Fig. 4(a) and then the estimated analog frequency using the conventional
CRT is shown in Fig. 4(b). In this case, the SNR is 20dB and two true-folded
frequencies are 1049 and 5994Hz for the undersampling rates M1 = 16,993Hz and
M2 = 19,001Hz, respectively. One can see that although the two folded frequencies
are estimated well (with much smaller errors than the ones in Case (i) due to
the much higher SNR) and the sampling rates are similar to the sampling rates
used in Case (i), the conventional CRT fails completely due to its non-robustness.
This confirms that our proposed robust CRT indeed provides a robust frequency
estimation solution.
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Fig. 2. (a) Mean error of the estimated normalized frequency from the adaptive IIR notch filter
with the first undersampling rate. (b) Mean error of the estimated normalized frequency from the
adaptive IIR notch filter with sampling rate above the Nyquist rate.
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Fig. 3. (a) Mean error of the estimated analog frequency f̂0 from the adaptive IIR notch filter
and the robust CRT with the two undersampling rates in Case (i). (b) Mean error of the estimated
analog frequency f̂0 from the adaptive IIR notch filter with sampling rate above the Nyquist rate
in Case (ii).
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Fig. 4. (a) Estimated folded frequencies r̂1 = f̂0,1 and r̂2 = f̂0,2 from the adaptive IIR notch
filter with the two undersampling rates in Case (iii). (b) The estimated analog frequency f̂0 from
the two estimated folded frequencies in (a) using the conventional CRT.
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Fig. 5. Estimated time-varying frequency using the robust CRT, where two true frequencies are
120 and 140 KHz.

In Example 2, we consider a nonstationary signal and the noisy discrete-time
sinusoidal signal with time-varying frequency is:

x(n) =
{

A cos(2πnf0/Mi + θ) + w(n/Mi), 0 ≤ n ≤ 3000
A cos(2πnf1/Mi + θ) + w(n/Mi), 3001 ≤ n ≤ 6000

(28)

where f0 = 120KHz and f1 = 140KHz and the SNR is 0 dB.
This simulation is to illustrate the adaptivity of our proposed frequency estima-

tion algorithm. We still use two undersamplings and the two sampling frequencies
are M1 = 17 M = 17, 000Hz and M2 = 19 M = 19, 000Hz with M = 1000. Clearly
frequencies f0 and f1 are all in the range (22). Figure 5 shows that the proposed
algorithm can well track the true frequencies in the range [0, MΓ1Γ2 · · ·ΓL).

4. Conclusion

In this paper, we have proposed an adaptive frequency estimation algorithm using
adaptive IIR notch filter and the robust Chinese remainder theorem (robust CRT)
when multiple undersampled signals are used. We have shown that our proposed
algorithm not only significantly reduces the sampling rates but also significantly
improves the frequency estimation accuracy. We have also shown that our pro-
posed algorithm can track the time-varying frequency well in a nonstationary
environment.
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Appendix: Proof of Theorem 1

Proof. If the conditions in Theorem 1 are satisfied, it is not hard to see that the
true solution ni in Eq. (16) falls in the range 0 ≤ ni < γi for 1 ≤ i ≤ L. Thus, for
any pair (n̄1, n̄i) ∈ Si for 2 ≤ i ≤ L, we have

|n̄iMi + r̂i − n̄1M1 − r̂1| ≤ |niMi + r̂i − n1M1 − r̂1|. (29)

Let µi = n̄i − ni for 1 ≤ i ≤ L, and replace r̂i by N − niMi − ∆ri in both sides of
Eq. (29) and we then have

|µiMi − µ1M1 − (∆ri − ∆r1)| ≤ |∆ri − ∆r1|. (30)

Therefore, according to Eqs. (15) and (23), we have

|µiMi − µ1M1| ≤ 2|∆ri − ∆r1| ≤ 2(|∆ri| + |∆r1|) ≤ 4τ < M. (31)

Dividing M in both sides of Eq. (31), we have

|µiΓi − µ1Γ1| < 1. (32)

Since µi, Γi, µ1, and Γ1 are all integers, Eq. (32) implies

µiΓi = µ1Γ1, for i = 2, 3, . . . , L. (33)

Since Γi and Γ1 are co-prime for 2 ≤ i ≤ L, we have

µ1 = hΓi and µi = hΓ1, i.e. n̄1 = n1 + hΓi and n̄i = ni + hΓ1 (34)

for integer h with |h| < min(γi, γ1). Substituting Eq. (34) into Eq. (29), we obtain

|n̄iMi + r̂i − n̄1M1 − r̂1| = |niMi + r̂i − n1M1 − r̂1|, (35)

which implies (n1, ni) ∈ Si for i = 2, 3, . . . , L. This proves n1 ∈ S. We next show
S = {n1}. Property (34) also implies

Si = {(n1 + hΓi, ni + hΓ1) : for integers h with |h| < min(γi, γ1)}. (36)

If n̄1 ∈ S, then n̄1 ∈ Si,1 for i = 2, 3, . . . , L, and therefore, according to the
definition of Si,1 in Eqs. (19) and (36), we have n̄1 − n1 = hΓi for some integer h

with |h| < min(γi, γ1) for i = 2, 3, . . . , L. This implies that n̄1 − n1 divides all Γi

for i = 2, 3, . . . , L, and thus is a multiple of the product of Γi, i = 2, 3, . . . , L, i.e. a
multiple of γ1. Since 0 ≤ n̄1, n1 ≤ γ1 − 1, we can conclude n̄1 −n1 = 0. This proves
that S = {n1}. In the meantime, n̄1 = n1 implies h = 0 in Eq. (36), i.e. n̄i = ni for
i = 2, 3, . . . , L. Hence, Theorem 1 is proved.
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